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Preface

No subject with a foot in both the academic and public domains like macro-
economics remains unchanged for long. The search for improved explanations,
and the challenge of new problems and new circumstances, keeps such subjects
in a constant state of flux. Dynamic general equilibrium (DGE) macroeconomics
has emerged in recent years as the latest step in the development of macro-
economics from its origins in the work of Keynes in the 1930s. It is largely an
attempt to integrate macroeconomics with microeconomics by providing micro-
foundations for macroeconomics. Most modern research in macroeconomics
now adopts this approach. The purpose of this book is to provide an account
of the DGE approach to modern macroeconomic theory and, in the process,
make DGE macroeconomics accessible to both a new generation of students and
older generations brought up on earlier approaches to macroeconomics, par-
ticularly those charged with giving policy advice to government, central banks,
or business.

A feature of the DGE approach to macroeconomics is that it considers the
whole economy at all times. Consequently, instead of viewing the economy as
a collection of features to be studied separately at first, before perhaps being
assembled into a complete picture of the economy, the focus of DGE macro-
economics is the economy as a whole. This is especially helpful when formu-
lating economic policy, where one wants to know the wider effects of any given
measure. It is essential knowledge for a policy advisor.

DGE macroeconomics evolved from neoclassical macroeconomics and real-
business-cycle (RBC) theory to include virtually every aspect of the aggregate
economy, including the open economy, exchange rates, and monetary and fis-
cal policy. It incorporates both Keynesian and New Keynesian economics, with
the latter’s emphasis on the microfoundations of macroeconomics and the
role of monopolistic competition: key elements in modern theories of inflation
targeting.

Once the preserve of finance, through DGE macroeconomics, asset pricing is
now reclaimed as part of macroeconomics. A particular feature of this book is
the inclusion of asset pricing theory as part of macroeconomics. It is shown
that exactly the same model used to determine macroeconomic aggregates like
consumption and capital accumulation also provides an explanation of stock
and bond prices, and foreign exchange, based on economic fundamentals. This
enables the sources of risk to be identified, as well as priced.

The virtue of DGE macroeconomics is brought out in the following encounter
with a frustrated student. He protested that he knew there were many theories
of macroeconomics, so why was I was teaching him only one? My reply was that
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xiv Preface

this was because only one theory was required to analyze the economy, and it
seemed easier to remember one all-embracing theory than a large number of
different theories.

I give the credit for my own conversion to DGE macroeconomics to the
first edition of Robert Barro’s undergraduate textbook Macroeconomics. This
was the first textbook to present macroeconomics using a general equilib-
rium approach. Many years ago, when visiting the University of Florida, I was
asked to teach a section of Macroeconomics II. As my research area at the
time was primarily econometrics, I had not taught macroeconomics before.
Since I had strongly disliked the Keynesian approach to macroeconomics, even
from my undergraduate days at the London School of Economics (LSE), partly
as a learning device I chose Macroeconomics as the course book. Although
the students found Macroeconomics far too hard, together with Kydland and
Prescott’s RBC analysis, I found it to be a most revealing way to think about
both macroeconomics and econometrics.

It made me realize that the traditional way of doing macroeconometrics, equa-
tion by equation, had largely failed to engage the interest of macroeconomic the-
orists because the emphasis was too much on the dynamic specification of the
model and too little on the key macroeconomic parameters, or the general equi-
librium implications of the estimated model. Since any variable can be closely
approximated by a univariate time-series representation, the danger in tradi-
tional macroeconometrics is that, in trying to improve goodness of fit by using
a general dynamic specification, the omission of (possibly important) variables
may be obscured. This indicated to me that macroeconomic theory should be
given a much more important role in macroeconometric model building, and
the reliance on time-series methods should be rethought. This is still not a
popular view in the United Kingdom, and was heretical for an ex-postgraduate
student from the LSE, particularly one brought up on “the LSE tradition” of
econometrics.

Although Barro’s Macroeconomics uses little mathematics, in this book the
aim is to provide a more formal demonstration of the results. In my view, it is
only by going into such details that one can obtain a proper understanding of
the strengths and weaknesses of the theory. This was beautifully shown in the
classic Blanchard and Fisher book Lectures in Macroeconomics, which gave the
first technical textbook treatment of DGE macroeconomics. The present book
may even be regarded simply as a more mathematical exposition of Macro-
economics with extensions to more recent research, and an updated version of
Lectures in Macroeconomics.

In order to maintain the flow of the argument in the book, I have tried to
avoid unnecessary clutter by keeping footnotes and references to a minimum. I
should therefore like to acknowledge my enormous debt to the writings of oth-
ers whose work I have drawn on without giving them explicit recognition. Some
of the material in the book is original, usually with the purpose of filling in gaps
in the literature in order to make the coverage of topics more comprehensive.
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The immediate motivation for this book will be familiar to many teachers
who have tried to innovate by including recent research ideas in their lectures.
Having decided to change radically the content of macroeconomics in the M.Sc.
degree at the University of York, I found that there was no single book that I
could recommend to the students that covered all of the material I wished to
include. The students soon complained that there was no book for the course
and asked me to photocopy and distribute my lectures notes, which I did. The
next cohort of students complained that they couldn’t read my handwritten
lecture notes, so why didn’t I type them out, which I did. Subsequent cohorts
complained that notes were all very well but they would be even more useful
if they were written up properly with all of the argument included. So I did.
I then received requests from old students, who had heard about this latest
development, to send them the notes too. At this point I decided that I might as
well turn my notes into a book, and so redeem a pledge made long ago to Richard
Baggaley to write a book for him. I then provided my students with chapters
of the book instead of lecture notes. Their complaint now is that the course
seems to contain rather a lot of material and some of it is rather technical. So
thanks for bringing about this book go especially to my students, who have
been right at every stage and have prompted me to do better by them. Even so,
without Richard Baggaley’s constant support and encouragement, I doubt if I
would have made the required effort.

I would also like to thank Gulcin Ozkan for reading and commenting on large
parts of the book and my wife Ruth for not grudging the many weekends spent
writing—in all honesty, I cannot call it work, as it has proved such a stimulating
project. I hope that the reader will share my enthusiasm, and the enlightenment
that this way of doing macroeconomics brings.
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1
Introduction

1.1 Dynamic General Equilibrium versus
Traditional Macroeconomics

Modern macroeconomics seeks to explain the aggregate economy using the-
ories based on strong microeconomic foundations. This is in contrast to the
traditional Keynesian approach to macroeconomics, which is based on ad hoc
theorizing about the relations between macroeconomic aggregates. In modern
macroeconomics the economy is portrayed as a dynamic general equilibrium
(DGE) system that reflects the collective decisions of rational individuals over a
range of variables that relate to both the present and the future. These individ-
ual decisions are then coordinated through markets to produce the macroecon-
omy. The economy is viewed as being in continuous equilibrium in the sense
that, given the information available, people make decisions that appear to be
optimal for them, and so do not make persistent mistakes. This is also the sense
in which behavior is said to be rational. Errors, when they occur, are attributed
to information gaps, such as unanticipated shocks to the economy.

A distinction commonly drawn is between short-run and long-run equilibria.
The economy is assumed to always be in short-run equilibrium. The long run, or
the steady state, is a mathematical property of the macroeconomic model that
describes its path when all past shocks have fully worked through the system.
This can be either a static equilibrium, in which all variables are constant, or,
more generally, a growth equilibrium, in which in the absence of shocks, there
is no tendency for the economy to depart from a given path, usually one in
which the main macroeconomic aggregates grow at the same rate. It is not,
therefore, the economy that is assumed to be in long-run equilibrium, but the
macroeconomic model. The equilibrium—short or long—is described as general
because all variables are assumed to be simultaneously in equilibrium, not just
some of them, or a particular market, which is a situation known as partial
equilibrium.

Individual decisions are assumed to be based on maximizing the discounted
sum of current and future expected welfare subject to preferences and four
constraints: budget or resource constraints, endowments, the available tech-
nology, and information. A central issue for DGE macroeconomics is therefore
intertemporal: whether to consume today, or save today in order to consume
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in the future. This entails being able to transfer today’s income for future use,
or future income for today’s use. These transfers may be achieved by holding
financial assets or by borrowing against future income. The different decisions
are then reconciled through the economy-wide market system, and by market
prices (including asset prices). The focus of modern macroeconomics, there-
fore, is on the individual’s responses to shocks and how these are likely to
affect multiple markets simultaneously both in the present and in the future.

Three main types of decision are taken by economic agents. They relate
to goods and services, labor, and assets: physical assets (the capital stock,
durables, housing, etc.) or financial assets (money, bonds, and equity)—each
has its own economy-wide market. It is convenient to consider the decisions of
individuals according to the type of economic agent they are acting as: a house-
hold, a firm, or a government. Broadly, the decisions of the household relate to
consumption, labor supply, and asset holdings. The firm determines the supply
of goods and services, labor demand, investment, productive and financial cap-
ital, and the use of profits. Government determines its expenditure, taxation,
transfers, base money, and the issuance of public debt.

The starting point for DGE macroeconomic models is a small general equilib-
rium model, but one that includes the main macroeconomic variables of inter-
est. It is based on a single individual who produces a good that can either
be consumed or invested to increase future output and consumption. It is
commonly known either as the Ramsey (1928) model or as the representative-
agent model. This is a surprisingly useful characterization of the economy as
it permits the analysis of a number of its key features—consumption and sav-
ing, saving and investment, investment and dividend payments, technological
progress, the intertemporal nature of decisions, the nature of economic equilib-
rium, the short-run and long-run behavior of the economy (the business cycle
and economic growth), and how prices, such as real wages and interest rates,
are determined—but without having to introduce them explicitly.

The basic Ramsey model can be roughly interpreted as that of a closed econ-
omy without a market structure in which the decisions are coordinated by a
central planner. A first step toward greater realism is to allow decisions to be
decentralized. This requires us to add markets—which act to coordinate deci-
sions, and thereby enable us to abandon the device of the central planner—and
financial assets. Subsequent steps are to include a government, and hence fiscal
policy, to introduce money, and hence a distinction between real and nominal
variables, and to allow a foreign dimension (the current account, the balance of
payments, and real and nominal exchange rates). At each stage the economy is
analyzed as a general equilibrium system and the significance for the economy
of each added feature can be studied. Because it highlights individual behavior,
one of the main attractions of this approach is that it provides a suitable frame-
work for analyzing economic policy through respecting the “deep structural”
parameters of the economy, which are not usually changed by policy—unless,
of course, they are policy parameters that are changed. This too is in contrast
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to traditional macroeconomic models, like the Keynesian model, which are not
specified in terms of the deep structural parameters but by coefficients which
may be changed by policy in a manner that is unspecified, or unknown.

1.2 Traditional Macroeconomics

Views on how best to analyze macroeconomic variables such as aggregate con-
sumption, total output, and inflation have changed much in the last twenty-five
years. Under the influence of Keynesian macroeconomics, the emphasis was on
the short-run behavior of the economy, why the economy seemed to persist
in a state of disequilibrium, and how best to bring it back to equilibrium, i.e.,
how to stabilize the economy. In studying these issues, it was common for each
macroeconomic variable to be modeled one at a time in separate equations; only
then were they combined to form a model of the whole economy. The Brook-
ings macroeconometric model was constructed in exactly this way (Duesenberry
1965): in the first stage individual aggregate variables were allocated to sepa-
rate researchers and then, in the second stage, their equations were collected
together to form the complete macroeconometric model. As a result, macro-
economics tended to focus on the short-run behavior of the economy and did
so using a partial-equilibrium approach which led to a compartmentalization
of thought in which it was difficult to acquire an overall view of how the system
as a whole was likely to behave in response, for example, to a change in an
exogenous variable, such as a policy instrument, or to a shock. Consequently,
it was sometimes difficult to take into account the wider and longer-run effects
of policy—policies which may even have been designed to combat the shock.
There was, therefore, a tendency for policy to be too narrowly conceived and
analyzed.

The study of macroeconomics was prompted in large part by the Great
Depression—the worldwide recession of the 1930s. One of Keynes’s original
objectives in The General Theory (Keynes 1936) was to understand how such
sustained periods of high unemployment could occur. From the beginning,
therefore, interest was directed not so much to how the economic system
behaved in long-run equilibrium, but to why it seemed to be misbehaving by
generating long periods of apparent disequilibrium—in particular, departures
from full employment—and to what, if anything, could be done about this. Until
the last few years macroeconomic theory (and especially macroeconomic text-
books) has focused mainly on constructing models to explain this so-called
disequilibrium behavior in the economy with a view to formulating appropri-
ate stabilization policies to return the economy to equilibrium. The grounds for
stabilization policy are that the economic system departs from equilibrium and,
left to itself, would not return to equilibrium, or would do so too slowly. The
aim of the policy intervention is to restore equilibrium, or to return the econ-
omy to equilibrium (or close to equilibrium) more quickly. This disequilibrium
approach to macroeconomics tends to focus on individual markets and not the
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4 1. Introduction

system as a whole. It also emphasizes the demand side of the economy. The
outcome was a piecemeal, partial-equilibrium approach to macroeconomics. A
corollary of the emphasis on disequilibrium was that equilibrium came to be
regarded as a special, and less important, case.

1.3 Dynamic General Equilibrium Macroeconomics

The traditional approach to macroeconomics may be contrasted with the con-
ception of DGE macroeconomics that economic agents are continuously reopti-
mizing subject to constraints with the result that the macroeconomy is always
in some form of equilibrium, whether short run or long run. According to this
view, the short-run equilibrium of the economy may differ from its long-run
equilibrium but, if stable, the short-run equilibrium will be changing through
time and will over time approach the long-run equilibrium; but the only sense
in which the economy can be in disequilibrium at any point in time is through
basing decisions on the wrong information. From this perspective, even the
view sometimes expressed that disequilibrium is a special case of DGE macro-
economics is misleading. DGE models assume that ex ante the economy is
always in equilibrium.

Although for most economies macroeconomics has retained a focus on short-
run behavior and stabilization, inspection of the path followed by gross domes-
tic product (GDP) shows that the dominant feature is the growth in the trend of
potential output; the loss of output due to recessions is almost trivial by com-
parison. This suggests that it is far more important to raise the rate of growth
of potential output through supply-side policies than to move the economy
back toward the trend path of potential output by demand-side stabilization
policies.

The origins of DGE macroeconomics lie in the work of Lucas (1975), Kyd-
land and Prescott (1982), and Long and Plosser (1983) on real business cycles.
Their aim was to explain the dynamic behavior of the economy (notably the
auto-covariances of real output and the covariances of output with other aggre-
gate macroeconomic time series) based on a competitive rational-expectations
equilibrium model that took its inspiration from models of economic growth.
The initial focus was on the role of technology shocks in generating the busi-
ness cycle. The model used by Kydland and Prescott was, in essence, the model
of Ramsey; that of Lucas included, in addition, government expenditures and
money. Subsequent work extended the model in various ways in order to exam-
ine the effects of other types of shocks. We consider the principal results of
this research in chapter 14. These issues are not, however, the sole concern of
DGE macroeconomics, or of this book.

A frequent motivation for constructing macroeconomic models, and one of
the first questions usually asked of a model, is what it implies for economic pol-
icy. (A recent discussion of the usefulness of DGE models in formulating policy
is Chari and Kehoe (2006).) Nonetheless, it is important to realize that the aim
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of macroeconomics is not just to study policy issues. There are prior questions
that should be asked, such as how the economy behaves in equilibrium, and
how it responds to changes in exogenous variables and to shocks. Finding the
answers to these questions is a sufficient reason to study macroeconomics. It is
not always necessary to search for policies that alter the equilibrium solution,
especially if we are unclear what the broader consequences might be.

Much of our analysis will be on considering what sort of factors might disturb
an economy’s equilibrium, and how the economy responds to these. They may
be changes in exogenous variables or shocks. They may be permanent or tempo-
rary, anticipated or unanticipated, real or nominal, demand or supply, domestic
or foreign, and the response of the economy may be different in each case. The
conclusions we reach are often very different from those based on traditional
macroeconomic models. Shocks may be serially uncorrelated, but the intrinsic
dynamic structure of the economy may result in them having persistent effects
on macroeconomic variables. This is the cause of short-term fluctuations in the
economy, and hence the basis of business-cycle theory.

DGE models are intertemporal. The models are forward looking. Current deci-
sions are affected by expectations about the future. As a result, we use intertem-
poral dynamic optimization, in which people are treated as rationally process-
ing current information about the future when making their decisions. There is
a premium on obtaining the correct information and on deciding how best to
use it. These concerns are linked to the concept of rationality—another key fea-
ture of DGE macroeconomics. The willingness of macroeconomists to make the
assumption of rationality rapidly divided professional opinion into two camps.
Traditional macroeconomics was based on the assumption of myopic decision
making in which mistakes, even when realized, were often persisted in. The
central idea behind rational expectations is that people do not make persistent
mistakes once they are identified. This does not necessarily imply, as is often
assumed, that people have more or less complete knowledge—for the mistakes
are largely the result of shocks, or unanticipated information gaps. It is suffi-
cient to suppose that mistakes are not repeated. As forward-looking decisions
must be based on expectations of the future, they may be incorrect; decisions
that seem correct ex ante may not therefore be correct ex post. As previously
noted, only as a result of this type of mistake might it be appropriate to think
of the economy as being in disequilibrium.

Recent research has suggested that a policy of intervention by the govern-
ment tends to be most successful when the government has an informational
advantage over the private sector. If the private sector is able to fully antici-
pate the intervention, then the policy may be less successful. This is mostly
true when the intervention involves private rather than public goods. As the
private sector would substitute public for private goods, in effect, households
would be paying for these goods from taxes instead of after-tax income. In con-
trast, the provision of public goods leads to a net increase in output as total
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private benefits exceed total private costs. These arguments about government
expenditures apply more generally, of course, and will be developed further.

Another attraction of this intertemporal approach to macroeconomics is that
it resolves a long-standing flaw in Keynesian economics. This concerns the way
equilibrium is defined in dynamic macroeconomics. The problem goes back to
Keynes’s (1926) Treatise on Money , in which the concept of equilibrium used
was that of a flow equilibrium (savings equals investment). Keynes realized
that his formulation of equilibrium was incorrect and so he wrote The General
Theory partly in an attempt to correct this error (Keynes 1936). In Treatise on
Money, one variable (the interest rate) had the task of equilibrating two vari-
ables (savings and investment). Keynes’s solution in The General Theory was
to introduce a second variable (income). This allowed savings to be equal to
investment for any possible values of savings and investment. Unfortunately,
Keynes was still using an incorrect concept of equilibrium, namely, flow equilib-
rium. It is suggested by Skidelski (1992) that Keynes was never entirely happy
with The General Theory. Perhaps this was because he realized that he had still
not fully solved the problem of macroeconomic equilibrium.

The correct concept of equilibrium, which eluded Keynes, is that of stock
equilibrium; perhaps this was because he was principally interested in the short
run and not in long-run equilibrium. In DGE macroeconomic models individual
preferences relate to consumption (a flow variable), but equilibrium in the econ-
omy is defined with reference to capital (a stock). There are an infinite num-
ber of possible flow equilibria—sometimes called temporary (or short-term)
equilibria—but only one of these is consistent with the stock equilibrium. The
problem is how to obtain this flow equilibrium. (We show that this is usually
the unique saddlepath to equilibrium.) It is common in DGE macroeconomics
to start by deriving the stock equilibrium.

A crucial feature of the stock equilibrium is that it involves a forward-looking
component, and is not just backward looking. This introduces a vital distinc-
tion between economics and the natural sciences that in some ways makes
economics harder. Because people look forward when making decisions there
may be opportunities for others to manipulate strategically for their own ben-
efit the information on which these decisions are based. The inanimate natural
sciences, such as physics and chemistry, do not have such a forward-looking
component in their dynamic structure, and therefore do not have this strategic
dimension.

Two complaints are sometimes made about macroeconomics. The first is that
macroeconomics employs models that are far too simple to capture the full
complexity of the economy, and as a result are of dubious value. The second,
a comment made by some who are familiar with engineering, is that macro-
economic models are far too complex to be useful. The first opinion is easier
for most people to sympathize with than the second. However, engineering
has found that it is necessary to find a way of simplifying matters in order
to make progress. There may be a lesson in this for macroeconomics. It may
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provide a justification for the use of models that are designed to capture key
features of the economy while retaining their simplicity by abstracting from
unnecessary detail. The simplicity of macroeconomic models, commonly seen
as a major weakness, may therefore be a potential strength. It is true that virtu-
ally all macroeconomic policy is based on a simplified model of the economy,
and there is an obvious danger in applying the conclusions obtained from such
models to situations where the simplifying assumptions are too distorting. This
makes it advisable to take care to establish the robustness of the conclusions
to departures from the model assumptions. Nonetheless, as in engineering, the
simple models of macroeconomics can often be remarkably robust and hence
useful. DGE macroeconomic models tend to be more complex than Keynesian
models, but are still essentially highly stylized. For another view of the relation
between macroeconomics and engineering, see Mankiw (2006).

1.4 This Book

This book is organized as a sequence of steps that extend the basic model in
order to produce, by the end, a general picture of the economy that can be used
to analyze its main features. The sequence starts with the basic closed-economy
model and is followed by the introduction of growth, markets, government, the
real open economy, money, price stickiness, asset price determination, financial
markets, the international monetary system, nominal exchange rates, and mon-
etary policy. The book concludes with a discussion of the empirical evidence
on DGE models. In view of the above strictures on the advantages of using sim-
ple models, rather than retaining each added feature for each subsequent step,
thereby finishing up with a complex general model of the economy, we aim to
return to the original model as closely as we can and add the new feature to that.
In this way we aim to provide a toolbox that is suitable for understanding how
the economy works and that is useful for macroeconomic analysis, rather than
a fully specified macroeconomic model so complex that it can only be studied
using numerical methods.

Our starting point, in chapter 2, is the basic centralized DGE model for a
closed economy expressed in real terms. Its purpose is to introduce the method-
ology of DGE macroeconomics. Although the setting is simple, it provides a
remarkably powerful representation of an economy that has been used to study
a wide variety of problems in macroeconomics, including real business cycles.
It captures the key problem of DGE macroeconomics: namely, the intertempo-
ral decision either to consume today or to invest in order to accumulate capital
and produce more for extra consumption in the future. This simple model illus-
trates the important distinction between stock equilibrium and the sequence
of flow equilibria that bring this about subject to suitable stability conditions.

The steady-state solution of the basic model of chapter 2 is a static equilib-
rium. In chapter 3 we show how the basic model can be modified so that in
steady state the economy may achieve balanced economic growth. As a result,
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we are able to reinterpret the basic static solution as a description of the behav-
ior of the economy about its steady-state growth path. As it is simpler to analyze
a model with a static equilibrium, in later chapters we ignore, where possible,
growth in the knowledge that we can focus on the deviations of the economy
about its growth path. If we require the full solution, we can add the growth
path to the deviations from it.

We decentralize decision making in chapter 4 and include markets to coor-
dinate these decisions. In this way we are able to study the joint decisions of
households and firms and their interaction in goods, labor, and capital markets.
We show that various prices—notably wages and the rate of return on capital—
although not included explicitly in the basic model, are nonetheless present
implicitly. We also discuss the relationship between households and firms, and
how the profits of the firm generate the firm’s total value, the value of a share,
and dividend income to households who are the owners of firms.

We introduce government into the model in chapter 5. We discuss the basis
of government expenditures and how best to finance them with debt and taxes.
In the process we consider optimal debt and taxation policy and the sustain-
ability of the fiscal stance. This discussion is extended in chapter 6 to cover the
problem of time inconsistency in fiscal policy, and to introduce the overlapping-
generations model. This is particularly useful for fiscal and other decisions
involving time periods that are very long, such as that of a generation. We use
this to study the increasingly important issue of how to finance pensions.

In chapter 7 we introduce the foreign sector. This has important conse-
quences for the economy as it alters the economy’s resource constraint. The
economy is no longer constrained to consume only what it can produce itself.
Domestic residents can then borrow from and/or invest abroad. All of this
should result in a welfare improvement for the economy. Making the economy
open introduces many new issues and variables, and so greatly complicates the
basic model. For example, there is the allocation problem between domestic
and foreign goods and services and the determination of their associated rela-
tive price (the terms of trade), the relative costs of living of different countries
(the real exchange rate), and the sustainability of current-account deficits.

So far all variables have been defined in real terms. This is partly to show
that money plays a minor role in most of the real decisions of the economy. In
chapter 8 we study nominal magnitudes—including the general price level and
the optimal rate of inflation—by introducing money into the closed economy.
Our focus here is on what determines the demand for money and why this
might be affected by interest rates. We also discuss the use of credit instead of
money. Although in a partial-equilibrium view of the economy money appears to
impose a real cost, we show that in general equilibrium money is far more likely
to be neutral in its effect on real variables. This chapter paves the way for the
later discussion of monetary policy as it covers a key channel in the monetary
transmission mechanism, namely, how money and interest rates affect other
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variables via the money market. Later we consider whether money has real
effects in the short run.

Up to this point it has been assumed that prices are perfectly flexible and
adjust so that markets clear each period. This is often regarded as a major weak-
ness of DGE models compared with Keynesian models, which tend to stress the
imperfect flexibility of prices, arguing that this causes a consequent lack of
market clearing. In chapter 9 we show how to introduce imperfect price flexi-
bility into the DGE model. We show how monopolistic competition in goods and
labor markets may cause imperfect price flexibility and result in a cost to the
economy in terms of lost output. In this way we are able to incorporate price
stickiness yet retain the benefits and insights of the DGE model. Such models
are sometimes known as New Keynesian models. The principal remaining dif-
ference between Keynesian and DGE macroeconomics is that in the DGE frame-
work we continue to assume that the economy is always in equilibrium—albeit
a temporary, and not necessarily a long-run, equilibrium. Thus economic agents
always expect to be in their preferred positions subject to the constraints they
face, one of which is the information they possess. In this sense, even prices
are chosen optimally. Having introduced price stickiness, we then consider how
this affects the determination of the aggregate supply function, a key equation
in the determination of inflation.

Chapters 10 and 11 are a notable departure from traditional treatments of
macroeconomics as they consider the determination of asset prices and the
behavior of financial markets. Once the preserve of finance, these issues are
now increasingly recognized as essential components of economics and, in
particular, of DGE theory. The same basic DGE model that we have used to
determine consumption, savings, and capital accumulation can be solved for
financial assets and asset prices. This provides an explanation of asset prices
based on economic fundamentals as opposed to the usual approach in finance,
namely, relative asset pricing. Consequently, asset prices are determined in
conjunction with macroeconomic variables instead of in relation to other asset
prices. The general equilibrium theory of asset pricing is set out in chapter 10
and it is specialized to apply to the bond, equity, and foreign exchange (FOREX)
markets in chapter 11.

Until chapter 10, we have, for the most part, ignored the fact that intertem-
poral decisions involve uncertainty about the future and are based on fore-
casts of the future formed from current information. Our analysis has there-
fore been conducted using nonstochastic, rather than stochastic, intertemporal
optimization. This has allowed us to use Lagrange multiplier analysis instead of
the more complicated stochastic dynamic programming. In general equilibrium
asset pricing, uncertainty about future payoffs is a central feature of the analy-
sis. The degree of uncertainty about each asset can be different. It ranges from
certain to highly uncertain payoffs. Assets with certain payoffs have risk-free
returns; those with uncertain payoffs have risky returns which incorporate risk
premia in order to provide compensation for bearing the risk. Asset pricing may
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be characterized as the problem of determining the size of the risk premium
that is required in order for risk-averse investors to hold a risky asset, i.e., the
expected return on a risky asset in excess of the return on a risk-free asset.

In our previous discussion of the economy, in effect, we treated savings as
being invested in a risk-free asset. It may seem, therefore, that we must rework
many of our previous results in order to allow for investing in risky assets.
This would, of course, greatly complicate the analysis as it would necessitate
the inclusion of risk effects throughout. We show in chapter 10 that this is not,
in fact, necessary as all we need do is risk-adjust all returns, i.e., adjust all risky
returns by subtracting their risk premium. This implies that we can continue to
work with only a risk-free asset and to use nonstochastic optimization. Hence,
most of the time we are able to ignore such uncertainty.

In chapter 7 we treat the nominal exchange rate as given and consider only
the determination of the real exchange rate. In chapter 12 we analyze the deter-
mination of nominal exchange rates. As the exchange rate is an asset price (the
relative price of domestic and foreign currency), we must use the asset pricing
theory developed in chapters 10 and 11. The no-arbitrage condition for FOREX
is the uncovered interest parity condition, which relates the exchange rate to
the interest differential between domestic and foreign bonds. Macroeconomic
theories of the exchange rate are based on how macroeconomic variables affect
interest rates and, through these, the exchange rate. Before embarking on our
analysis of exchange rates in chapter 12, we discuss the effect of different
international monetary arrangements on the determination of exchange rates.

We complete our development of the DGE model in chapter 13 by studying
monetary policy. Our analysis is based on the New Keynesian model of inflation.
To bring out its new features, we contrast this with the traditional Keynesian
analysis of inflation. We consider alternative ways of conducting monetary pol-
icy: via exchange rates, money-supply targets, and inflation targeting. We then
focus solely on inflation targeting. We examine the optimal way to conduct infla-
tion targeting both in a closed economy and in an open economy with a floating
exchange rate. We conclude our discussion of monetary policy by proposing a
simple model of monetary policy in the euro area, where there are indepen-
dent economies but a single currency, and hence a single interest rate for all
economies.

In the final chapter, chapter 14, we present a brief account of how well simple
DGE models perform in explaining the main stylized facts of the economy, and
we try to identify some of their shortcomings. We base our discussion on a small
selection of studies of the real business cycle that is designed to illustrate the
principal issues. The main focus in this literature is the ability of these models,
whether they are for a closed or an open economy, to explain the business cycle
solely by productivity shocks. We complete this discussion by examining a DGE
model of the economy that compares the effects of a large number of different
types of shock, including monetary-policy shocks.
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Finally, we provide a mathematical appendix in which we explain the main
mathematical results and techniques we have used in this discussion of DGE
macroeconomics.
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The Centralized Economy

2.1 Introduction

In this chapter we introduce the basic dynamic general equilibrium model for
a closed economy. The aim is to explain how the optimal level of output is
determined in the economy and how this is allocated between consumption
and capital accumulation or, put another way, between consumption today and
consumption in the future. We exclude government, money, and financial mar-
kets, and all variables are in real, not money, terms. Although apparently very
restrictive, this model captures most of the essential features of the macroecon-
omy. Subsequent chapters build on this basic model by adding further detail
but without drastically altering the substantive conclusions derived from the
basic model.

Various different interpretations of this model have been made. It is some-
times referred to as the Ramsey model after Frank Ramsey (1928), who first
introduced a very similar version to study taxation (Ramsey 1927). The model
can also be interpreted as a central (or social) planning model in which the
decisions are taken centrally by the social planner in the light of individual
preferences, which are assumed to be identical. (Alternatively, the social plan-
ner’s preferences may be considered as imposed on everyone.) It is also called
a representative-agent model when all economic agents are identical and act
as both a household and a firm. Another interpretation of the model is that it
can be regarded as referring to a single individual. Consequently, it is some-
times called a Robinson Crusoe economy. Any of these interpretations may
prove helpful in understanding the analysis of the model. This model has also
formed the basis of modern growth theory (see Cass 1965; Koopmans 1965).
Our interest in this model, however interpreted, is to identify and analyze cer-
tain key concepts in macroeconomics and key features of the macroeconomy.
The rest of the book builds on this first pass through this highly simplified
preliminary account of the macroeconomy.

2.2 The Basic Dynamic General Equilibrium Closed Economy

The model may be described as follows. Today’s output can either be consumed
or invested, and the existing capital stock can either be consumed today or
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used to produce output tomorrow. Today’s investment will add to the capital
stock and increase tomorrow’s output. The problem to be addressed is how
best to allocate output between consumption today and investment (i.e., to
accumulating capital) so that there is more output and consumption tomorrow.

The model consists of three equations. The first is the national income
identity:

yt = ct + it, (2.1)

in which total output yt in period t consists of consumption ct plus investment
goods it . The national income identity also serves as the resource constraint
for the whole economy. In this simple model total output is also total income
and this is either spent on consumption, or is saved. Savings st = yt − ct can
only be used to buy investment goods, hence it = st .

The second equation is
∆kt+1 = it − δkt. (2.2)

This shows how kt , the capital stock at the beginning of period t, accumulates
over time. The increase in the stock of capital (net investment) during period t
equals new (gross) investment less depreciated capital. A constant proportion
δ of the capital stock is assumed to depreciate each period (i.e., to have become
obsolete). This equation provides the (intrinsic) dynamics of the model.

The third equation is the production function:

yt = F(kt). (2.3)

This gives the output produced during period t by the stock of capital at the
beginning of the period using the available technology. An increase in the stock
of capital increases output, but at a diminishing rate, hence F > 0, F ′ > 0, and
F ′′ � 0. We also assume that the marginal product of capital approaches zero
as capital tends to infinity, and approaches infinity as capital tends to zero, i.e.,

lim
k→0
F ′(k) = ∞ and lim

k→∞
F ′(k) = 0.

These are known as the Inada (1964) conditions. They imply that at the origin
there are infinite output gains to increasing the capital stock whereas, as the
capital stock increases, the gains in output decline and eventually tend to zero.

If we interpret the model as an economy in which the population is constant
through time, then this is like measuring output, consumption, investment,
and capital in per capita terms. For example, if there is a constant population
N , then yt = Yt/N is output per capita, where Yt is total output for the whole
economy.

Output and investment can be eliminated from the subsequent analysis, and
the model reduced to just one equation involving two variables. Combining the
three equations gives the economy’s resource constraint:

F(kt) = ct +∆kt+1 + δkt. (2.4)

This is a nonlinear dynamic constraint on the economy.
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Given an initial stock of capital, kt (the endowment), the economy must
choose its preferred level of consumption for period t, namely ct , and capi-
tal at the start of period t+1, namely kt+1. This can be shown to be equivalent
to choosing consumption for periods t, t+1, t+2, . . . , with the preferred levels
of capital, output, investment, and savings for each period obtained from the
model.

Having established the constraints facing the economy, the next issue is its
preferences. What is the economy trying to maximize subject to these con-
straints? Possible choices are output, consumption, and the utility derived from
consumption. We could choose their values in the current period or over the
long term. We are also interested in whether a particular choice for the current
period is sustainable thereafter. This is related to the existence and stability of
equilibrium in the economy. We consider two solutions: the “golden rule” and
the “optimal solution.” Both of these assume that the aim of the economy (the
representative economic agent or the central planner) is to maximize consump-
tion, or the utility derived from consumption. The difference is in attitudes to
the future. In the golden rule the future is not discounted whereas in the optimal
solution it is. We can show that, as a result, the golden rule is not sustainable
following a negative shock to output but the optimal solution is.

2.3 Golden Rule Solution

2.3.1 The Steady State

Consider first an attempt to maximize consumption in period t. This is perhaps
the most obvious type of solution. It would be equivalent to maximizing utility
U(ct). From the resource constraint, equation (2.4), ct must satisfy

ct = F(kt)− kt+1 + (1− δ)kt. (2.5)

To maximize ct the economy must, in period t, consume the whole of current
output F(kt) plus undepreciated capital (1−δ)kt , and undertake no investment
so that kt+1 = 0. In the following period output would, of course, be zero as
there would be no capital to produce it. This solution is clearly unsustainable.
It would only appeal to an economic agent who is myopic, or one who has no
future.

We therefore introduce the additional constraint that the level of consump-
tion should be sustainable. This implies that in each period new investment is
required to maintain the capital stock and to produce next period’s output. In
effect, we are assuming that the aim is to maximize consumption in each period.
With no distinction being made between current and future consumption, the
problem has been converted from one with a very short-term objective to one
with a very long-term objective.

The solution can be obtained by considering just the long run and we there-
fore omit time subscripts. In the long run the capital stock will be constant and
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long-run consumption is obtained from equation (2.5) as

c = F(k)− δk. (2.6)

Consumption in the long run is output less that part of output required to
replace depreciated capital in order to keep the stock of capital constant. Thus
the only investment undertaken is that to replace depreciated capital. The
output that remains can be consumed.

The problem now is how to choose k to maximize c. The first-order condition
for a maximum of c is

∂c
∂k

= F ′(k)− δ = 0 (2.7)

and the second-order condition is

∂2c
∂k2

= F ′′(k) � 0.

Equation (2.7) implies that the capital stock must be increased until its marginal
product F ′(k) equals the rate of depreciation δ. Up to this point an increase in
the stock of capital increases consumption, but beyond this point consumption
begins to decrease. This is because the output cost of replacing depreciated
capital in each period requires that consumption be reduced. The solution can
be depicted graphically. Figure 2.1 shows straightforwardly that the marginal
product of capital falls as the stock of capital increases. Given the rate of depre-
ciation δ, the value of the capital stock can be obtained. The higher the rate of
depreciation, the smaller the sustainable size of the capital stock.

We can determine the optimal level of consumption from figure 2.2. The
curved line is the level of output F(k) produced by the capital stock k that is
in place at the beginning of the period. The straight line is replacement invest-
ment δk. The difference between the two is consumption plus net investment
(capital accumulation), i.e.,

F(k)− δk = c +∆k,
which is simply equation (2.5). The maximum difference occurs where the lines
are furthest apart. This happens where F ′(k) = δ, i.e., where the slope of the tan-
gent to the production function—the marginal product of capital F ′(k)—equals
the slope of the line depicting total depreciation, δ. For ease of visibility, in the
diagram the size of δ (and hence of depreciated capital) has been exaggerated.

Figure 2.3 provides another way of depicting the solution. The curved line rep-
resents consumption plus net investment (i.e., net output or the area between
the two lines in figure 2.2) and is plotted against the capital stock. Points above
the line are not attainable due to the resource constraint F(k)−δk � c+∆k. The
maximum level of consumption plus net investment occurs where the slope of
the tangent is zero. At this point net investment F ′(k)− δ = 0.

We can now find the sustainable level of consumption. This occurs when the
capital stock is constant over time, implying that ∆k = 0 and that net invest-
ment is zero. The maximum point on the line is then the maximum sustainable
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kk#

δ

F'(k)

Figure 2.1. The marginal product of capital.

k

y

kk#

c# +   k#

k#

δ

δ

δ

δ

δ

F(k)

max c = c# = F(k#) −   k#

Figure 2.2. Total output, consumption, and replacement investment.

kk#

max c = c#

ct +    kt + 1∆

F(k) −   kδ

∂c /∂k = F'(k) −    = 0δ

Figure 2.3. Net output.

level of consumption c#. This requires a constant level of the capital stock k#.
This solution is known as the golden rule.

2.3.2 The Dynamics of the Golden Rule

Due to the constraint that the capital stock is constant, c# is sustainable indef-
initely provided there are no disturbances to the economy. If there are distur-
bances, then the economy becomes dynamically unstable at {c#, k#}. To see
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why the golden rule is not a stable solution, consider what would happen if the
economy tried to maintain consumption at the maximum level c# even when
the capital stock differs from k# due to a negative disturbance.

If k < k# then the level of output would be F(k) < F(k#). In order to consume
the amount c#, it would then be necessary to consume some of the existing
capital stock, with the result that ∆k < 0, and the capital stock would no longer
be constant, but would fall. With less capital, future output would therefore be
even smaller and attempts to maintain consumption at c# would cause further
decreases in the capital stock. Eventually the economy would no longer be able
to consume even c# as there would be too little capital to produce this amount.

An important implication emerges from this: an economy that consumes too
much will, sooner or later, find that it is eroding its capital base and will not
be able to sustain its consumption. In practice, of course, it is not possible to
switch to consuming capital goods, except in a few special cases. The analysis
can, however, be interpreted to mean that switching resources from producing
capital goods to consumption goods will eventually undermine the economy,
and hence consumption. Thus, the apparently small technical point concern-
ing the stability of the solution turns out to have profound implications for
macroeconomics.

There is, however, a simple solution. The economy can reduce its consump-
tion temporally and divert output to rebuilding the capital stock to a level
that restores the original equilibrium. This would mean that negative shocks
to the system would impact heavily on consumption in the short term. Trying
to achieve the maximum level of consumption in each period may not, there-
fore, result in maximizing consumption in the longer term. The solution is to
suspend the consumption objective temporarily.

It may be noted that if, as a result of a positive disturbance, k > k# and hence
output is raised, it would be possible to increase consumption temporarily until
the capital stock returns to the lower, but sustainable, level k#. We make further
observations on the stability of the economy under the golden rule below after
we have considered the optimal solution.

2.4 Optimal Solution

2.4.1 Derivation of the Fundamental Euler Equation

Instead of assuming that future consumption has the same value as consump-
tion today, we now assume that the economy values consumption today more
than consumption in the future. In particular, we suppose that the aim is to
maximize the present value of current and future utility,

max
{ct+s ,kt+s}

Vt =
∞∑
s=0

βsU(ct+s),

where additional consumption increases instantaneous utility Ut = U(ct),
implying U ′t > 0, but does so at a diminishing rate as U ′′t � 0. Future utility
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18 2. The Centralized Economy

is therefore valued less highly than current utility as it is discounted by the dis-
count factor 0 < β < 1, or equivalently at the rate θ > 0, where β = 1/(1+ θ).
The aim is to choose current and future consumption to maximize Vt subject
to the economy-wide resource constraint equation (2.4).

As the problem involves variables defined in different periods of time it is
one of dynamic optimization. This sort of problem is commonly solved using
either dynamic programming, the calculus of variations, or the maximum prin-
ciple. But because, as formulated, it is not a stochastic problem, it can also be
solved using the more familiar method of Lagrange multiplier analysis. (See the
mathematical appendix for further details of dynamic optimization by these
methods.)

First we define the Lagrangian constrained for each period by the resource
constraint

Lt =
∞∑
s=0

{βsU(ct+s)+ λt+s[F(kt+s)− ct+s − kt+s+1 + (1− δ)kt+s]}, (2.8)

where λt+s is the Lagrange multiplier s periods ahead. This is maximized with
respect to {ct+s , kt+s+1, λt+s ; s � 0}. The first-order conditions are

∂Lt
∂ct+s

= βsU ′(ct+s)− λt+s = 0, s � 0, (2.9)

∂Lt
∂kt+s

= λt+s[F ′(kt+s)+ 1− δ]− λt+s−1 = 0, s > 0, (2.10)

plus the constraint equation (2.4) and the transversality condition

lim
s→∞β

sU ′(ct+s)kt+s = 0. (2.11)

Notice that we do not maximize with respect to kt as we assume that this is
predetermined in period t.

To help us understand the role of the transversality condition (2.11) in
intertemporal optimization, consider the implication of having a finite cap-
ital stock at time t + s. If consumed this would give discounted utility of
βsU ′(ct+s)kt+s . If the time horizon were t + s, then it would not be optimal
to have any capital left in period t + s; it should have been consumed instead.
Hence, as s → ∞, the transversality condition provides an extra optimality
condition for intertemporal infinite-horizon problems.

The Lagrange multiplier can be obtained from equation (2.9). Substituting for
λt+s and λt+s−1 in equation (2.10) gives

βsU ′(ct+s)[F ′(kt+s)+ 1− δ] = βs−1U ′(ct+s−1), s > 0.

For s = 1 this can be rewritten as

β
U ′(ct+1)
U ′(ct)

[F ′(kt+1)+ 1− δ] = 1. (2.12)

Equation (2.12) is known as the Euler equation. It is the fundamental dynamic
equation in intertemporal optimization problems in which there are dynamic
constraints. The same equation arises using each of the alternative methods of
optimization referred to above.
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2.4. Optimal Solution 19

2.4.2 Interpretation of the Euler Equation

It is possible to give an intuitive explanation for the Euler equation. Consider the
following problem: if we reduce ct by a small amount dct , how much larger must
ct+1 be to fully compensate for this while leaving Vt unchanged? We suppose
that consumption beyond period t + 1 remains unaffected. This problem can
be addressed by considering just two periods: t and t + 1. Thus we let

Vt = U(Ct)+ βU(Ct+1).

Taking the total differential of Vt , and recalling that Vt remains constant,
implies that

0 = dVt = dUt + βdUt+1 = U ′(ct)dct + βU ′(ct+1)dct+1,

where dct+1 is the small change in ct+1 brought about by reducing ct . Since we
are reducing ct , we have dct < 0. The loss of utility in period t is therefore
U ′(ct)dct . In order for Vt to be constant, this must be compensated by the
discounted gain in utility βU ′(ct+1)dct+1. Hence we need to increase ct+1 by

dct+1 = − U ′(ct)
βU ′(ct+1)

dct. (2.13)

As the resource constraint must be satisfied in every period, in periods t and
t + 1 we require that

F ′(kt)dkt = dct + dkt+1 − (1− δ)dkt,

F ′(kt+1)dkt+1 = dct+1 + dkt+2 − (1− δ)dkt+1.

As kt is given and beyond period t + 1 we are constraining the capital stock
to be unchanged, only the capital stock in period t + 1 can be different from
before. Thus dkt = dkt+2 = 0. The resource constraints for periods t and t + 1
can therefore be rewritten as

0 = dct + dkt+1,

F ′(kt+1)dkt+1 = dct+1 − (1− δ)dkt+1.

These two equations can be reduced to one equation by eliminating dkt+1 to
give another connection between dct and dct+1, namely,

dct+1 = −[F ′(kt+1)+ 1− δ]dct. (2.14)

This can be interpreted as follows. The output no longer consumed in period
t is invested and increases output in period t + 1 by −F ′(kt+1)dct . All of this
can be consumed in period t+ 1. And as we do not wish to increase the capital
stock beyond period t+1, the undepreciated increase in the capital stock, (1−
δ)dct , can also be consumed in period t + 1. This gives the total increase in
consumption in period t+1 stated in equation (2.14). The discounted utility of
this extra consumption as measured in period t is

βU ′(ct+1)dct+1 = −βU ′(ct+1)[F ′(kt+1)+ 1− δ]dct.
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20 2. The Centralized Economy

To keep Vt constant, this must be equal to the loss of utility in period t. Thus

U ′(ct)dct = βU ′(ct+1)[F ′(kt+1)+ 1− δ]dct.

Canceling dct from both sides and dividing through by U ′(ct) gives the Euler
equation (2.12).

2.4.3 Intertemporal Production Possibility Frontier

The production possibility frontier is associated with a production function
that has more than one type of output and one or more inputs. It measures the
maximum combination of each type of output that can be produced using a
fixed amount of the factor(s). The result is a concave function in output space
of the quantities produced. The intertemporal production possibility frontier
(IPPF) is associated with outputs at different points of time and is derived from
the economy’s resource constraint. This gives a second relation between ct and
ct+1. It is obtained by combining the resource constraints for periods t and t+1
to eliminate kt+1. The result is the two-period intertemporal resource constraint
(or IPPF)

ct+1 = F(kt+1)− kt+2 + (1− δ)kt+1

= F[F(kt)− ct + (1− δ)kt]− kt+2 + (1− δ)[F(kt)− ct + (1− δ)kt].
(2.15)

This provides a concave relation between ct and ct+1.
The slope of a tangent to the IPPF is

∂ct+1

∂ct
= −[F ′(kt+1)+ 1− δ]. (2.16)

As noted previously, this is also the slope of the indifference curve at the point
where it is tangent to the resource constraint. Hence, the IPPF also touches the
indifference curve at this point. And as

∂2ct+1

∂c2
t

= F ′′(kt+1) < 0,

the tangent to the IPPF flattens as ct decreases, implying that the IPPF is a
concave function. We use this result in the discussion below.

2.4.4 Graphical Representation of the Solution

The solution to the two-period problem is represented in figure 2.4. The upper
curved line is the indifference curve that trades off consumption today for con-
sumption tomorrow while leaving Vt unchanged. It is tangent to the resource
constraint. The lower curved line represents the trade-off between consump-
tion today and consumption tomorrow from the viewpoint of production, i.e.,
it is the IPPF. It touches the indifference curve at the point of tangency with the
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ct
*

ct + 1

ct + 1

*

max ct

max ct+1

1 + rt + 1

Vt = U(ct) +   U(ct + 1)β

Figure 2.4. A graphical solution based on the IPPF.

budget constraint. This solution arises as in equilibrium equations (2.13) and
(2.14), and (2.16) must be satisfied simultaneously so that

−dct+1

dct

∣∣∣∣
Vconst.

= F ′(kt+1)+ 1− δ = 1+ rt+1 = −∂ct+1

∂ct

∣∣∣∣
IPPF
.

The net marginal product F ′(kt+1)−δ = rt+1 can be interpreted as the implied
real rate of return on capital after allowing for depreciation. An increase in rt+1

due, for example, to a technology shock that raises the marginal product of
capital in period t + 1 makes the resource constraint steeper, and results in an
increase in Vt , ct , and ct+1.

2.4.5 Static Equilibrium Solution

We now return to the full optimal solution and consider its long-run equilibrium
properties. The long-run equilibrium is a static solution, implying that in the
absence of shocks to the macroeconomic system, consumption and the capital
stock will be constant through time. Thus ct = c∗, kt = k∗,∆ct = 0, and∆kt = 0
for all t. In static equilibrium the Euler equation can therefore be written as

βU ′(c∗)
U ′(c∗)

[F ′(k∗)+ 1− δ] = 1,

implying that

F ′(k∗) = 1
β
+ δ− 1 = δ+ θ.

The solution is therefore different from that for the golden rule, where F ′(k) =
δ. Figure 2.1 is replaced by figure 2.5. This shows that the optimal level of
capital is less than for the golden rule. The reason for this is that future utility
is discounted at the rate θ > 0.

The implications for consumption can be seen in figures 2.5 and 2.6. In fig-
ure 2.5 the solution is obtained where the slope of the tangent to the production
function is δ+ θ. As the tangent must be steeper than for the golden rule, this
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k* k# k

δ

δ θ+

F'(k)

Figure 2.5. Optimal long-run capital.
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k*

k# k

kδ

δ
δ

δ θ+
c* +   k*

c# +   k#δ

δ

Figure 2.6. Optimal long-run consumption.

implies that the optimal level of capital must be lower. Figure 2.6 shows that
this entails a lower level of consumption too. Thus c∗ < c# and k∗ < k#.

We have shown that discounting the future results in lower consumption.
This may seem to be a good reason for not discounting the future. To see what
the benefit of discounting is we must analyze the dynamics and stability of this
solution.

2.4.5.1 An Example

Suppose that utility is the power function

U(c) = c
1−σ − 1
1− σ .
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kk#k*

max c = c#

ct +    kt + 1∆

F(k) −   kδ

∂c /∂k = F'(k) −    = 0δ

c*

Figure 2.7. Optimal consumption compared.

It can be shown that σ = −cU ′′/U ′ is the coefficient of relative risk aversion
and that

U ′(ct+1)
U ′(ct)

= 1− σ ∆ct+1

ct
is an exact relation. Suppose also that the production function is Cobb–Douglas
so that

yt = Akαt .
Then the Euler equation (2.12) is

β
U ′(ct+1)
U ′(ct)

[F ′(kt+1)+ 1− δ] = β
(
ct+1

ct

)−σ
[αAk−(1−α)t+1 + 1− δ] = 1.

Hence the steady-state level of capital is

k∗ =
(
αA
δ+ θ

)1/(1−α)

and the steady-state level of consumption is

c∗ = Ak∗α − δk∗

=
(
A

δ+ θ
)1−α((1−α)δ+ θ

αα

)
.

2.4.6 Dynamics of the Optimal Solution

The dynamic analysis that we require uses a so-called phase diagram. This is
based on figure 2.7. To construct the phase diagram, we must first consider the
two equations that describe the optimal solution at each point in time. These
are the Euler equation and the resource constraint. For convenience they are
reproduced here:

βU ′(ct+1)
U ′(ct)

[F ′(kt+1)+ 1− δ] = 1,

∆kt+1 = F(kt)− δkt − ct. (2.17)
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k* kt

∆ct + 1 > 0

c t +
 ∆

k t +
 1

∆ct + 1 = 0

∆ct + 1 < 0

Figure 2.8. Consumption dynamics.

A complication is that both equations are nonlinear. We therefore consider
a local solution (i.e., a solution that holds in the neighborhood of equilib-
rium) obtained through linearizing the Euler equation by taking a Taylor series
expansion of U ′(ct+1) about ct . This gives

U ′(ct+1) � U ′(ct)+∆ct+1U ′′(ct).

Hence
U ′(ct+1)
U ′(ct)

� 1+ U
′′

U ′
∆ct+1,

U ′′

U ′
� 0,

and

∆ct+1 = U ′

U ′′

[
1− 1

β[F ′(kt+1)+ 1− δ]
]
. (2.18)

Thus we have two equations that determine the changes in consumption and
capital: equations (2.17) and (2.18).

These equations confirm the static-equilibrium solution as when ct = c∗ and
kt = k∗, we have∆ct+1 = 0,∆kt+1 = 0, and F ′(k∗) = δ+θ. From equation (2.18)
we note that when k > k∗ we have F ′(k) < F ′(k∗), and therefore F ′(k)+1−δ <
F ′(k∗) + 1 − δ. It follows that if k = k∗ we have ∆c = 0, i.e., consumption is
constant, and if k > k∗ then ∆c < 0, i.e., consumption must be decreasing. By a
similar argument, if k < k∗ then ∆c > 0 and consumption is increasing. Thus,
∆c � 0 for k � k∗. This is represented in figure 2.8.

The dynamic behavior of capital is determined from equation (2.17). When
ct � F(kt+1)− δkt we have ∆kt+1 � 0. This is depicted in figure 2.9. Above the
curve consumption plus long-run net investment exceeds output. The capital
stock must therefore decrease to accommodate the excessive level of consump-
tion. Below the curve there is sufficient output left over after consumption to
allow capital to accumulate.

Combining figures 2.8 and 2.9 gives figure 2.10, the phase diagram we require.
Note that this applies in the general nonlinear case and is not a local approx-
imation. The optimal long-run solution is at point B. The line SS through B is
known as the saddlepath, or stable manifold. Only points on this line are attain-
able. This is not as restrictive as it may seem, as the location of the saddlepath
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k

∆kt + 1 < 0

c t +
 ∆

k t +
 1

∆kt + 1 > 0

c < F(k) −   kδ

c > F(k) −   kδ

∆k = 0

c = F(k) −   kδ

Figure 2.9. Capital dynamics.

∆k = 0

k*

c*

k#

c#

k

ct + ∆kt + 1

A

S

S

B

Figure 2.10. Phase diagram.

is determined by the economy, i.e., the parameters of the model, and could in
principle be in an infinite number of places depending on the particular values
of the parameters. The arrows denote the dynamic behavior of ct and kt . This
depends on which of four possible regions the economy is in. To the northeast,
but on the line SS, consumption is excessive and the capital stock is so large
that the marginal product of capital is less than δ + θ. This is not sustainable
and therefore both consumption and the capital stock must decrease. This is
indicated by the arrow on SS. The opposite is true on SS in the southwest region.
Here consumption and capital need to increase. As the other two regions are not
attainable they can be ignored. The economy therefore attains equilibrium at
the point B by moving along the saddlepath to that point. At B there is no need
for further changes in consumption and capital, and the economy is in equilib-
rium. Were the economy able to be off the line SS—which it is not and cannot
be—the dynamics would ensure that it could not attain equilibrium. When there
are two regions of stability and two of instability like this the solution is called
a saddlepath equilibrium.

2.4.7 Algebraic Analysis of the Saddlepath Dynamics

An algebraic analysis of the dynamic behavior of the economy may be based on
the two nonlinear dynamic equations describing the optimal solution, namely,
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the Euler equation and the resource constraint:

βU ′(ct+1)
U ′(ct)

[F ′(kt+1)+ 1− δ] = 1, (2.19)

∆kt+1 = F(kt)− δkt − ct. (2.20)

The static (or long-run) equilibrium solutions {c∗, k∗} are obtained from

F ′(k∗) = δ+ θ, (2.21)

c∗ = F(k∗)− δk∗. (2.22)

As equations (2.19) and (2.20) are nonlinear in c and k, our analysis is based on a
local linear approximation to the full nonlinear model. The linear approximation
to equation (2.19) is obtained as a first-order Taylor series expansion about
{c∗, k∗}:

β[F ′(k∗)+ 1− δ+ U
′′(c∗)
U ′(c∗)

∆ct+1 + F ′′(k∗)(kt+1 − k∗)] � 1.

Using the long-run solutions (2.21) and (2.22), this can be rewritten as

U ′′(c∗)
U ′(c∗)

(ct+1 − c∗)+ F ′′(k∗)(kt+1 − k∗) � U
′′(c∗)
U ′(c∗)

(ct − c∗). (2.23)

The linear approximation to (2.20) is

∆kt+1 � F(k∗)+ F ′(k∗)(kt − k∗)− δkt − ct
or

kt+1 − k∗ � −{ct − [F(k∗)− δk∗]} + [F ′(k∗)+ 1− δ](kt − k∗)
= −(ct − c∗)+ θ(kt − k∗). (2.24)

We can now write equations (2.24) and (2.23) as a matrix equation of deviations
from long-run equilibrium:

[
ct+1 − c∗
kt+1 − k∗

]
=
⎡
⎢⎣1+ U

′F ′′

U ′′
−(1+ θ)U

′F ′′

U ′′

−1 1+ θ

⎤
⎥⎦
[
ct − c∗
kt − k∗

]
.

This is a first-order vector autoregression, which has the generic form

xt+1 = Axt,
where xt = (ct − c∗, kt − k∗)′.

The next step is to determine the dynamic behavior of this system. As shown
in the mathematical appendix, this depends on the roots of the matrix A or,
equivalently, the roots of the quadratic equation

B(L) = 1− (trA)L+ (detA)L2 = 0.

If the roots are denoted 1/λ1 and 1/λ2, then they satisfy

(1− λ1L)(1− λ2L) = 0.
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If the dynamic structure of the system is a saddlepath, then one root, say λ1, will
be the stable root and will satisfy |λ1| < 1 and the other root will be unstable
and will have the property |λ2| � 1. It is shown in the mathematical appendix
that approximately the roots are

{λ1, λ2} �
{

detA
trA

, trA− detA
trA

}

=
{

1+ θ
2+ θ + (U ′F ′′/U ′′) ,2+ θ +

U ′F ′′

U ′′
− 1+ θ

2+ θ + (U ′F ′′/U ′′)
}
.

Thus, as U ′F ′′/U ′′ � 0, we have 0 < λ1 < 1 and λ2 > 1. The dynamics of the
optimal solution are therefore a saddlepath, as already shown in the diagram.
We note that in the previous example

U ′F ′′

U ′′
= α(1−α)cy

σk2
> 0.

2.5 Real-Business-Cycle Dynamics

2.5.1 The Business Cycle

In practice an economy is continually disturbed from its long-run equilibrium by
shocks. These shocks may be temporary or permanent, anticipated or unantici-
pated. Depending on the type of shock, the equilibrium position of the economy
may stay unchanged or it may alter; and optimal adjustment back to equilib-
rium may be instantaneous or slow. The path followed by the economy during
its adjustment back to equilibrium is commonly called the business cycle, even
though the path may not be a true cycle. Although the economy will not be in
long-run equilibrium during the adjustment, it is behaving optimally during the
adjustment back to long-run equilibrium. In effect, it is attaining a sequence of
temporary equilibria, each of which is optimal at that time.

The traditional aim of stabilization policy is to speed up the return to equi-
librium. This is more relevant when market imperfections due to, for example,
monopolistic competition and price inflexibilities have caused a loss of output,
and hence economic welfare, than it is in our basic model, where there are nei-
ther explicit markets nor market imperfections. We return to these issues in
chapters 9 and 13.

Real-business-cycle theory focuses on the effect on the economy of a partic-
ular type of shock: a technology (productivity) shock. We already have a model
capable of analyzing this. The previous analysis has assumed that the economy
is nonstochastic. In keeping with this assumption we presume that the technol-
ogy shock is known to the whole economy the moment it occurs. A technology
shock shifts the production function upwards. Thus for every value of the stock
of capital k there is an increase in output y and hence in the marginal prod-
uct of capital F ′(k). We consider both permanent and temporary technology
shocks.
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Figure 2.11. The effect on capital of a positive technology shock.
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Figure 2.12. The effect on consumption of a positive technology shock.

2.5.2 Permanent Technology Shocks

A positive technology shock increases the marginal product of capital. This is
depicted in figure 2.11 as a shift from F ′0 to F ′1. As δ + θ is unchanged, the
equilibrium optimal level of capital increases from k∗0 to k∗1 .

The exact dynamics of this increase and the effect on consumption is shown
in figure 2.12. A positive technology shock shifts the curve relating consump-
tion to the capital stock upwards. The original equilibrium was at A, the new
equilibrium is at B, and the saddlepath now goes through B. As the economy
must always be on the saddlepath, how does the economy get from A to B? The
capital stock is initially k∗0 and it takes one period before it can change. As the
productivity increase raises output in period t, and the capital stock is fixed,
consumption will increase in period t so that the economy moves from A to C,
which is on the new saddlepath. There will also be extra investment in period
t. By period t + 1 this investment will have caused an increase in the stock of
capital, which will produce a further increase in output and consumption. In
period t + 1, therefore, the economy starts to move along the saddlepath—in



�

�

“wickens” — 2007/10/15 — 13:08 — page 29 — #47
�

�

�

�

�

�

2.5. Real-Business-Cycle Dynamics 29

geometrically declining steps—until it reaches the new equilibrium at B. Thus a
permanent positive technology shock causes both consumption and capital to
increase, but in the first period—the short run—only consumption increases.

2.5.3 Temporary Technology Shocks

If the positive technology shock lasts for just one period, then there is no change
in the long-run equilibrium levels of consumption and capital. The increase in
output in period t is therefore consumed and no net investment takes place.
In period t + 1 the original equilibrium level of consumption is restored. If the
shock is negative, then consumption would decrease.

This can also be interpreted as roughly what happens when there is a tempo-
rary supply shock. Business-cycle dynamics can be explained in a similar way,
though in a deep recession there is usually time for the capital stock to change
too. As the economy comes out of recession the level of the capital stock is
restored.

2.5.4 The Stability and Dynamics of the Golden Rule Revisited

Further understanding of the stability and dynamics of the golden rule solu-
tion can now be obtained. The golden rule equilibrium occurs at point A in
figure 2.10. It will be recalled that the golden rule does not discount the future
and therefore implicitly sets θ = 0. As a result the vertical line dividing the east
and west regions now goes through A, which is an equilibrium point.

The model appropriate for the golden rule can be thought of as using a mod-
ified version of the Euler equation (2.12) in which the marginal utility func-
tions are omitted. The Euler equation therefore becomes F ′(k) = δ, in which
there are no dynamics at all. This equation determines kt . The other equation is
the resource constraint, equation (2.17), and this determines ct . Thus the only
dynamics in the model are those associated with equation (2.17), and these
concern the capital stock.

At every point on the curved line in figure 2.10—except the point {c#, k#}—we
have ∆kt+1 < 0. At the point {c#, k#} we have ∆kt+1 = 0. This point is there-
fore an equilibrium, but, as we have seen, it is not a stable equilibrium because
achieving maximum consumption at each point in time requires absorbing all
positive shocks through higher consumption and all negative shocks by con-
suming the capital stock, which reduces future consumption. Thus, after a
negative shock the economy is unable to regain equilibrium if it continues to
consume as required by the golden rule.

The lack of stability of the golden rule solution can be attributed to the impa-
tience of the economy. By trading off consumption today against consumption
in the future, and by discounting future consumption, the optimal solution is
a stable equilibrium.

We now consider two extensions to the basic model that involve labor and
investment.
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2.6 Labor in the Basic Model

In the basic model labor is not included explicitly. Implicitly, it has been
assumed that households are involved in production and spend a given fixed
amount of time working. In an extension of the basic model we allow people to
choose between work and leisure, and how much of their time they spend on
each. Only leisure is assumed to provide utility directly; work provides utility
indirectly by generating income for consumption. This enables us to derive a
labor-supply function and an implicit wage rate. In practice, people can usu-
ally choose whether or not to work, but have limited freedom in the number of
hours they may choose. We take up this point in chapter 4.

Suppose that the total amount of time available for all activities is normalized
to one unit—in effect it has been assumed in the basic model considered so far
that labor input is the whole unit. We now assume instead that households have
a choice between work nt and leisure lt , where nt + lt = 1. Thus, in effect, in
the basic model, nt = 1. We now allow nt to be chosen by households.

We assume that households receive utility from consumption and leisure and
so we rewrite the instantaneous utility function as U(ct, lt), where the partial
derivatives Uc > 0, Ul > 0, Ucc � 0, and Ull � 0. In other words, there is
positive, but diminishing, marginal utility to both consumption and leisure. For
convenience, we assume thatUcl = 0, which rules out substitution between con-
sumption and leisure. We also assume that labor is a second factor of produc-
tion, so that the production function becomes F(kt,nt), with Fk > 0, Fkk � 0,
Fn > 0, Fnn � 0, Fkn � 0, limk→∞ Fk = ∞, limk→0 Fk = 0, liml→∞ Fn = ∞, and
liml→0 Fn = 0, which are the Inada conditions.

The economy maximizes discounted utility subject to the national resource
constraint

F(kt,nt) = ct + kt+1 − (1− δ)kt
and the labor constraint nt + lt = 1. Often it will be more convenient to replace
lt by 1−nt but, for the sake of clarity, here we introduce the labor constraint
explicitly.

The Lagrangian is therefore

Lt =
∞∑
s=0

{βsU(ct+s , lt+s)+ λt+s[F(kt+s , nt+s)− ct+s − kt+s+1 + (1− δ)kt+s]
+ µt+s[1−nt+s − lt+s]},

which is maximized with respect to {ct+s , lt+s , nt+s , kt+s+1, λt+s , µt+s ; s � 0}.
The first-order conditions are

∂Lt
∂ct+s

= βsUc,t+s − λt+s = 0, s � 0, (2.25)

∂Lt
∂lt+s

= βsUl,t+s − µt+s = 0, s � 0, (2.26)
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∂Lt
∂nt+s

= λt+sFn,t+s − µt+s = 0, s � 0, (2.27)

∂Lt
∂kt+s

= λt+s[Fk,t+s + 1− δ]− λt+s−1 = 0, s > 0. (2.28)

From the first-order conditions for consumption and capital we obtain the same
solutions as for the basic model. The consumption Euler equation for s = 1 is
as before:

β
Uc,t+1

Uc,t
[Fk,t+1 + 1− δ] = 1. (2.29)

Eliminating λt+s and µt+s from the first-order conditions for consumption,
leisure, and employment gives, for s = 0,

Ul,t = Uc,tFn,t. (2.30)

This has the following interpretation. Consider giving up dlt = −dnt < 0 units
of leisure. The loss of utility is Ul,t dlt < 0, which is the left-hand side of equa-
tion (2.30). This is compensated by an increase in utility due to producing extra
output of Fn,t dnt = −Fn,t dlt . When consumed, each unit of output gives an
extraUc,t in utility, implying a total increase in utility of−Uc,tFn,t dlt > 0, which
is the right-hand side of equation (2.30) when dlt = −1.

The long-run solution is obtained sequentially. In steady-state equilibrium
the long-run solution for capital is obtained from

Fk = θ + δ,
where β = 1/(1 + θ). The long-run solution for consumption is then obtained
from the resource constraint. So far this is the same as for the basic model.
Given c and k, we solve for lt and nt from equation (2.30) and the labor
constraint. The short-run solutions for ct and kt are the same as before. The
short-run dynamics for lt are similar to those for ct .

We can now obtain expressions for the wage rate and the total rate of return
to capital, which are implicit in the model but have not been defined explicitly.
If the production function is a homogeneous function of degree one (implying
that the production function has constant returns to scale), then we can show
that1

F(kt,nt) = Fn,tnt + Fk,tkt. (2.31)

Recalling that the general price level is unity, equation (2.31) says that the total
value of output is shared between labor and capital. The first term on the right-
hand side is the share of labor and the second is the share of capital. If labor is
paid its marginal product, then this is also the implied wage rate, i.e., Fn,t = wt ,
with each unit of labor having a cost (receiving a return) equal to the wage rate.
Similarly, if capital is paid its (net) marginal product, then Fk,t − δ = rt is the

1 A function f(x,y) that is homogeneous of degree α satisfies λαf(x,y) = f(λx,λy).
Alternatively, we could take a first-order expansion of the production function F(kt,nt) about
kt = nt = 0, which would give the approximation F(kt,nt) � Fn,tnt + Fk,tkt .
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return on capital. Thus, Fn,t and Fk,t−δ are the implicit wage and rate of return
to capital in the basic model.

Consequently, we can write equation (2.31) as

F(kt,nt) = wtnt + (rt + δ)kt.
It follows that the real wage can also be expressed as

wt = F(kt,nt)− (rt + δ)ktnt
.

In the steady state, when rt = θ, these become

F(k∗, n∗) = wn∗ + (θ + δ)k∗,

w∗ = F(k
∗, n∗)− (θ + δ)k∗

n∗
.

As previously noted, labor was not included explicitly in the basic model. But
if we assume that nt = 1, then, in effect, labor was included implicitly. The
implied real wage is then

wt = F(kt,1)− Fk,tkt
= F(kt)− (rt + δ)kt.

In equilibrium this is

w∗ = F(k∗)− (θ + δ)k∗.
To summarize, we have found that when we allow people to choose how much

to work and we determine the wage rate and the rate of return to capital explic-
itly, the solutions for consumption and capital are virtually unchanged from
those of the basic model. This suggests that where appropriate and convenient
we may continue to omit labor explicitly from the analysis knowing that it is
present implicitly. Moreover, the wage rate and the rate of return to capital,
although not explicitly included either, are also defined implicitly.

2.7 Investment

Investment is included explicitly in the basic model, but the emphasis is on the
capital stock, not investment. We have assumed previously that there are no
costs to installing new capital. We now consider investment and capital accu-
mulation when there are installation costs. Although we focus on Tobin’s (1969)
q-theory of investment (see also Hayashi 1982), which has the effect of compli-
cating the dynamic behavior of the economy, there are other ways to account
for the effects of investment on dynamic behavior. One alternative examined
below is to assume that it takes time to install new investment. This is the
approach adopted by Kydland and Prescott (1982) and they called it “time to
build.”
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2.7.1 q-Theory

In the basic model the focus was on obtaining the optimal levels of consump-
tion and the capital stock. As the change in the stock of capital equals gross
investment net of depreciation, this also implies a theory of net investment.
We saw that following a permanent change in the long-run equilibrium level
of capital, it is optimal if the actual level of capital adjusts to its new equilib-
rium over time along the saddlepath. The adjustment path for capital implies
an optimal level of investment each period. This optimal level of investment
will differ each period until the new long-run general equilibrium level of cap-
ital is attained. At this point investment is only replacing depreciated capital.
Although capital takes time to adjust to its new steady-state level, investment
in the basic model adjusts instantaneously to the level that is optimal for each
period. In practice, however, due to costs of installation, it is usually optimal
to adjust investment more slowly. As a result, the dynamic behavior of capital
reflects both adjustment processes.

To illustrate, suppose that new investment imposes an additional resource
cost of 1

2φ(it/kt) for each unit of investment, where φ > 0. In other words, the
cost of a unit of investment depends on how large it is in relation to the size of
the existing capital stock. We choose this particular functional form due to its
mathematical convenience and the consequent ease of interpreting the results.
The resource constraint facing the economy now becomes nonlinear in it and
kt and is given by

F(kt) = ct +
(

1+ φ
2
it
kt

)
it, φ � 0, (2.32)

where for simplicity we have reverted to the assumption that capital is the
sole factor of production and we ignore leisure. Since our primary interest
here is investment we do not combine the resource constraint with the capital
accumulation equation, but treat them as two separate constraints.

The Lagrangian for maximizing the present value of utility is therefore

Lt =
∞∑
s=0

{
βsU(ct+s)+ λt+s

[
F(kt+s)− ct+s − it+s − φ

2

i2t
kt

]

+ µt+s[it+s − kt+s+1 + (1− δ)kt+s]
}
.

The first-order conditions are

∂Lt
∂ct+s

= βsUc,t+s − λt+s = 0, s � 0,

∂Lt
∂it+s

= −λt+s
(

1+ φ
2
it
kt

)
+ µt+s = 0, s � 0,

∂Lt
∂kt+s

= λt+s
[
Fk,t+s + φ2

(
it
kt

)2]
− µt+s−1 + (1− δ)µt+s = 0, s > 0.
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The first-order condition for investment implies that

it+s = 1
φ
(qt+s − 1)kt+s , s � 0, (2.33)

where the ratio of the Lagrange multipliers

qt+s = µt+sλt+s
� 1 (2.34)

is called Tobin’s q. It follows that investment will take place in period t + s
provided qt+s > 1.
q can be interpreted as follows. An extra unit of capital raises output, and

hence consumption and utility, and λ is the marginal benefit in terms of the
utility of sacrificing a unit of current consumption in order to have an extra
unit of investment, and hence the extra capital. Similarly, µ is the marginal
benefit in terms of utility of an extra unit of investment. Thus q measures the
benefit from investment per unit of benefit from capital. Expressing utility in
terms of units of output, q can also be interpreted as the ratio of the market
value of one unit of investment to its cost.

Combining the three first-order conditions, we obtain the following nonlinear
dynamic relation when s = 1:

Fk,t+1 = Uc,t
βUc,t+1

qt − (1− δ)qt+1 − 1
2φ
(qt+1 − 1)2. (2.35)

This equation together with equations (2.32)–(2.34) and the capital accumula-
tion equation form a system of four nonlinear dynamic equations that we can
solve for the decision variables ct , kt , it , and qt .

2.7.1.1 Long-Run Solution

In the steady-state long run we have ∆ct = ∆kt = ∆it = ∆qt = 0. In the long
run the capital accumulation equation and equation (2.33) imply that

i
k
= δ = 1

φ
(q − 1).

Hence, the long-run value of q is

q = 1+φδ � 1. (2.36)

The long-run level of the capital stock is obtained from the steady-state solution
of equation (2.35). From β = 1/(1 + θ), and using the long-run solution for q,
equation (2.35) can be written as

Fk = θ + δ+φδ(θ + 1
2δ) � θ + δ. (2.37)

In the absence of costs of installation,φ = 0, and so qt = 1 and Fk = θ+δ, which
is the same result as that obtained in the basic closed-economy model. From
figure 2.5, in order for Fk � θ + δ, a lower level of capital is required, implying
that installation costs reduce the optimal long-run level of the capital stock and
hence also the optimal long-run levels of consumption and investment. This is
because installation costs reduce the resources available for consumption and
investment.
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2.7.1.2 Short-Run Dynamics

Introducing installation costs affects the short-run dynamic behavior of the
economy as well as its long-run solution. To gain some insight into the effects
of installation costs on dynamic behavior we analyze an approximation to
equation (2.35) obtained by assuming that consumption is at its steady-state
level and using a linear approximation to the quadratic term in qt+1 about
q, its steady-state level given by equation (2.36). As a result, we are able to
approximate equation (2.35) by the forward-looking equation

qt = βqt+1 + β(Fk,t+1 − δ− 1
2φδ

2).

Using the steady-state level of Fk,t+1 given by equation (2.37), this equation can
be rewritten in terms of deviations from long-run equilibrium as

qt − q = β(qt+1 − q)+ β(Fk,t+1 − Fk). (2.38)

Solving this forwards, the solution for qt is

qt − q =
∞∑
s=0

βs+1(Fk,t+s+1 − Fk).

A further interpretation of qt can now be provided. It is the present value of
the extra output produced by undertaking one more unit of investment. The
greater this is, the more investment will be undertaken in period t. Since the
price of one unit of investment is one, qt−1 is the increase in the implied value
of the firm.

In practice, the measurement of qt presents a problem. Although qt can be
interpreted as the ratio of the market value of one unit of investment to its cost,
it is often estimated by the ratio of the market value of a firm to its book value.
This implies using the average value of current and past investment instead of
the marginal value of new investment.

Consider next the dynamic interaction between kt and qt . Two equations
capture this. The first is equation (2.38). The second is obtained by using (2.33)
to eliminate it from the capital accumulation equation to give

it = 1
φ
(qt − 1)kt = kt+1 − (1− δ)kt.

We therefore have two nonlinear equations:

qt − q = β(qt+1 − q)+ β(Fk,t+1 − Fk),
(qt − q +φ)kt = φkt+1.

These can be linearly approximated about the steady-state levels of kt and qt
as

(1− β)(qt − q)− βFkk(kt − k) = β∆qt+1 + βFkk∆kt+1, (2.39)

k(qt − q) = φ∆kt+1, (2.40)
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Figure 2.13. Phase diagram for q.

where k is the steady-state level of kt . Thus, as Fkk < 0, in steady state kt is
negatively related to qt through

kt − k = θ
Fkk
(qt − q). (2.41)

2.7.1.3 The Effect of a Productivity Increase

The dynamic behavior of kt and qt can be illustrated by considering the effect
of a permanent increase in capital productivity. In figure 2.13 the line ∆q = 0
depicts the long-run relation between kt and qt given by equation (2.41). This
was derived from equation (2.39) by setting ∆kt+1 = ∆qt+1 = 0. The line ∆k = 0
gives the long-run equilibrium level of kt and is obtained from equation (2.40)
by setting ∆kt+1 = 0. Before the productivity increase these two lines inter-
sected at A. Note that at this initial equilibrium qt = 1. Following the produc-
tivity increase there is a “jump” increase in qt so that qt > 1. This induces a
rise in investment above its normal replacement level δk. Initially, kt remains
unchanged and so the economy moves to point B. New investment increases the
capital stock each period until the economy reaches its new long-run equilib-
rium at C by moving along the saddlepath from B. At this point qt is restored to
its long-run equilibrium level of one and the equilibrium capital stock, output,
and consumption are permanently higher.

2.7.2 Time to Build

An alternative way of reformulating the basic model that results in more general
dynamics is to assume that it takes time to install new investment. Kydland and
Prescott (1982) were the first to incorporate this idea from neoclassical invest-
ment theory into their real-business-cycle DGE macroeconomic model (see also
Altug 1989).

Taking account of time-to-build effects results in a respecification of the capi-
tal accumulation equation (2.2). Consider two ways of doing this. Suppose, first,
that investment expenditures recorded at time t are the result of decisions to
invest ist made earlier. Moreover, suppose that a proportion ϕi of recorded
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investment in period t is investment starts made in period t − i, then we can
write

it =
∞∑
i=0

ϕiist−i. (2.42)

If there is a lag in installation, the initial values ofϕi may be zero; and if the lag
is finite, thenϕi = 0 for some i > J > 0. The capital accumulation equation (2.2)
remains unchanged. We now carry out the optimization of discounted utility
with respect to it and ist as well as consumption and capital subject to the extra
constraint, equation (2.42). This is the Kydland and Prescott approach.

An alternative possible formulation is to assume that a proportion ϕi of
investment undertaken in period t is installed and ready for use as part of the
capital stock by period t + i. Equation (2.2) may therefore be rewritten as

∆kt+1 =
∞∑
i=0

ϕiit−i − δkt, (2.43)

where
∑J
i=0ϕi = 1. The shape of the distributed lag function will reflect the

costs of installation. A modification of this is to incorporate depreciation inϕi
and assume that it reflects the proportion of investment undertaken in period
t that contributes to productive capital in period t+ i. Equation (2.43) can then
be rewritten with δ = 0. As a result, using the national income identity (2.1) and
the production function, the economy’s resource constraint becomes

∆kt+1 =
∞∑
i=0

ϕi[F(kt−i)− ct−i]. (2.44)

We may now maximize
∑∞
s=0 βsU(ct+s) subject to equation (2.44).

2.8 Conclusions

In this highly simplified account of macroeconomics we have developed a skele-
ton model that provides the basic framework that will be built on in the rest of
the book. The framework itself will need little change, but more detail will be
required.

The key features of the macroeconomy that we have represented are the econ-
omy’s objective (its preferences), the resource constraint facing the economy
(which is derived from the production function, the capital accumulation equa-
tion, and the national income identity), and the endowment of the economy (its
initial capital stock). We have shown that the central issues are intertemporal:
whether to consume today or in the future, and whether to maximize consump-
tion each period or take account of future consumption. Consumption in the
future is increased by consuming less today and by saving today’s surplus and
investing it in additional capital in order to produce, and hence to consume,
more in the future. Trying to maximize today’s consumption without consid-
ering future consumption, or preservation of the capacity to produce in the
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future, is shown to destabilize the economy, leaving it vulnerable to negative
output shocks.

We have found that the dynamics of the basic model derive from just two
sources: the intertemporal utility function and the presence of the change in
stocks in the resource constraint. An important issue in macroeconomics is the
extent to which the dynamic behavior of the macroeconomy can be attributed to
these two factors, or whether accounting for business cycles requires additional
features.

We have extended the basic model in two ways. One allowed people flexi-
bility in their choice between work and leisure. We were then able to derive a
labor-supply function and to obtain an implicit measure of the wage rate. We
found that the solutions for consumption and capital were virtually unchanged
from those of the basic model. This suggests that, where appropriate and con-
venient, we may continue to omit labor explicitly, recognizing that it is present
implicitly.

The second extension was to take account of the cost of installing capital. As a
result, we were able to derive the investment function. In the absence of costs of
installing capital, investment takes place instantaneously, even though it takes
time for capital to adjust to the desired level. Introducing installation costs for
new investment has the effect of delaying the completion of new investment and
slowing down the adjustment of the capital stock even more. Having considered
the theory of investment that arises from the presence of costs of installing
capital and noted the extra complexity it brings to the analysis of the short-run
behavior of the economy, for simplicity we will assume hereafter that there are
no capital installation costs.

The basic model provides a centralized analysis of the economy. In chapter 4
we decentralize the decisions of households and firms and introduce goods and
labor markets to coordinate their decisions.

For further discussion of the basic model see Blanchard and Fischer (1989)
and Intriligator (1971).
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Economic Growth

3.1 Introduction

In our analysis of the basic model we have assumed that in long-run equilib-
rium the economy will be static. A more realistic description of most economies
is that they are growing through time and that in the long run the rate of
growth is constant and positive. In other words, the steady state is a path
involving growth. In this chapter we consider how to modify the previous analy-
sis to accommodate steady-state growth. We are then able to reinterpret the
basic model as representing the behavior of the economy about its steady-state
growth path. This decomposition of the dynamic behavior of the economy into
a steady-state growth path and deviations from it is retained only implicitly
in subsequent chapters as we omit explicit discussion of the growth path and
focus only on the deviations from it. We do so in the knowledge that this is not a
full description of the economy. The key references on the theory of growth are
Cass (1965), Koopmans (1965), Shell (1967), Solow (1956), and Swan (1956). For
more recent surveys see Aghion and Howitt (1998) and Barro and Sala-i-Martin
(2004).

There are three main causes of economic growth: increases in the stock of
capital; technological progress embodied in new capital equipment; and growth
in labor input due primarily to population growth, immigration, and changes
in participation rates. Hours of work have tended to decline slowly over time
in more developed countries, but we assume that they are constant. It could be
argued, with good reason, that technological change simply reflects advances in
human knowledge, and therefore economic growth should be ascribed to labor
and not to capital. This is the basis of endogenous theories of economic growth.
Nonetheless, our discussion will proceed as though technical progress appears
exogenously at a constant rate µ. Population growth has affected different coun-
tries at different times. For example, in the United States, population growth
brought about by immigration has always been an important source of growth.
In Europe and Japan population growth has been much less important than
capital accumulation. More recently, immigration into the United Kingdom as
a result of the expansion of the European Union (EU) has contributed to raising
the United Kingdom’s rate of growth of GDP. We assume that the population
grows in our economy at the constant rate n.
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Figure 3.1. U.S. GDP (solid line) and capacity GDP (dashed line) 1947–2002.

The importance of economic growth is revealed in figure 3.1, which plots GDP
and full-capacity GDP for the United States in the period 1947:1–2002:4. The
main feature of this graph is the growth of full-capacity GDP. In comparison,
deviations of GDP from full capacity are relatively minor. Insofar as economic
welfare depends on output, this suggests that the gains from growth are far
more important than those from stabilization, yet historically macroeconomics
has been much more concerned with stabilization than with growth. A rough
estimate of the relative importance of stabilization is the ratio of cumulative
actual output over the period to cumulative capacity output. This is 94.8%,
implying that only 5.2% of output was lost as a result of not operating at full
capacity. This measure of the output loss is likely to be an underestimate as
capacity output is endogenous and is linked to the level of the capital stock
and investment. As the capital stock and investment are expected to be higher
when the economy is operating close to full capacity, with perfect stabilization
capacity output is likely to have been larger than implied by figure 3.1.

3.2 Modeling Economic Growth

We now turn to the issue of how to modify our previous analysis, which assumed
a zero rate of long-run growth. We make three changes to the model. All affect
the production function, which is now specified as

Yt = F(Kt,Nt, t).
In this chapter, we use capital letters for total output, capital, and labor, and
lowercase letters for the corresponding per capita values. Previously, output
and capital were measured in per capita terms. First, we take account of the size
of the population, Nt , and assume that the entire population work. Second, we
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introduce the total level of output in the economy, Yt , and the total capital stock,
Kt . Third, we allow the production function to shift with time at the constant
rate µ, hence the inclusion of t in the production function. This is designed to
capture technological progress. In this formulation, technical progress occurs
exogenously; it is not the result of an explicit economic decision and there are no
resource costs. A more realistic model of technological development would be
to assume that it requires resources to produce it such as human capital, which
is created in part by educational investment, and research and development
expenditures. This would imply that technical progress is endogenous to the
economy, and not exogenous.

To make matters more transparent, we make the convenient and widely
used assumption that the production function has the constant-returns Cobb–
Douglas form:

Yt = (1+ µ)tKαt N1−α
t .

This implies that technical progress is neutral and not factor-augmenting or
biased. Thus it raises the productivity of both factors. In practice, technical
progress is also likely to be embodied in new capital, making new capital more
productive, and hence raising the marginal product of labor.

The production function can be rewritten in per capita terms as

yt = (1+ µ)tkαt ,
where yt = Yt/Nt and kt = Kt/Nt .

The national income identity becomes

Yt = Ct + It,
where Ct is total consumption, It is total investment, and the capital accumu-
lation equation is

∆Kt+1 = It − δKt.
As ∆Nt+1/Nt = n,

Nt = (1+n)tN0,

where N0 is the population level in the base period.
We consider two approaches: the Solow–Swan theory of growth and the

“theory of optimal growth.” The Solow–Swan theory is akin to the golden rule
and the theory of optimal growth is a generalization of the optimal solution.
We show that the key difference between the two theories reduces to their
treatment of savings.

3.3 The Solow–Swan Model of Growth

3.3.1 Theory

The aim of the Solow–Swan theory of growth is to maximize the rate of growth
of output per capita, yt , each period (see Solow 1956; Swan 1956). We can see
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from the production function that this is equivalent to maximizing capital per
capita, kt .

The savings rate for the economy is

st = 1− Ct
Yt

= 1− ct
yt
.

The key assumption in the Solow–Swan model is that the economy has a
constant savings rate so that st = s.

If all savings are invested, then

st = It
Yt
= it.

As the savings rate is constant, so is the investment rate.
The rate of growth of capital is

∆Kt+1

Kt
= It
Kt
− δ

= It/Yt
Kt/Yt

− δ

= s Yt/Nt
Kt/Nt

− δ

= s yt
kt
− δ.

Hence the rate of growth of capital per capita is

∆kt+1

kt
= ∆Kt+1

Kt
− ∆Nt+1

Nt
= s yt

kt
− (δ+n),

and so the capital accumulation equation is

∆kt+1 = syt − (δ+n)kt. (3.1)

Equation (3.1) says that the change in capital per capita equals gross investment
per capita (which is equal to savings syt) less depreciation and an adjustment
that allows for the fact that capital has to grow extra fast to keep ahead of
population growth.

What is the maximum rate of change in capital per capita, kt , that the economy
can sustain? Consider figures 3.2 and 3.3, in which all variables are measured
in per capita terms.

Figure 3.2 depicts the production function, gross investment per capita, and
the drag on growth in capital per capita caused by depreciation and population
growth. ∆kt+1 is measured by the distance between syt and (δ+n)kt .

Figure 3.3 plots ∆kt+1 against kt . The slope of a straight line through the
origin, which can be written as ∆kt+1 = γkt , denotes the rate of growth of
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Figure 3.2. Total output and saving.

∆kt + 1
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k*

δsyt − (   + n)kt = ∆kt + 1

k

Figure 3.3. Capital accumulation.

capital, namely, γ. The maximum rate of growth is at the origin when kt = 0.
The highest point on the curve denotes the maximum value of ∆kt+1 that is
achievable, but not the maximum rate of growth. The line from the origin is
drawn through this point. Let the value of capital per capita at this point be
k∗. Choosing a kt > k∗ would be suboptimal as the rate of growth of kt would
be lower than is necessary. Choosing kt < k∗ would generate a higher rate of
growth in kt but this would not be sustainable because output would be at too
low a level.

The relation between the rate of growth of capital and its level can be shown
more formally using the fact that the rate of growth of the capital stock is a
function of the size of the capital stock, i.e.,

γ(kt) = s ytkt − (δ+n).

We then find that

dγ(kt)
dkt

= s
kt

[
∂yt
∂kt

− yt
kt

]
= −syt

k2
t

[
1− kt

yt
∂yt
∂kt

]
< 0,

as the capital elasticity
kt
yt
∂yt
∂kt

< 1.
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Thus, due to the declining marginal product of capital, the larger the capital
stock, the lower the rate of growth.

3.3.2 Growth and Economic Development

We can now draw some very important implications for economic development.

1. As ∂γ/∂k < 0, less developed (lower k) countries grow faster than more
developed (higher k) countries.

2. As ∂γ/∂s = y/k > 0 and ∂γ/∂δ = ∂γ/∂n < 0, a higher savings rate and
lower rates of depreciation and population growth would increase γ.

3. Technical progress would shift the production function up in each period
and would increase y/k. As ∂γ/∂(y/k) = s > 0, it would therefore
increase γ.

Developed countries tend to have higher savings rates and more technical
progress; developing countries tend to have higher rates of population growth.
In practice, the growth advantage of developing countries due to having a higher
marginal product of capital is often offset in per capita terms by higher popu-
lation growth. Higher rates of technical progress in developed countries often
sustain their economic growth rates.

3.3.3 Balanced Growth

The rate of growth of per capita output is

∆yt+1

yt
= ∆Yt+1

Yt
− ∆Nt+1

Nt

= µ +α
[
∆Kt+1

Kt
− ∆Nt+1

Nt

]

= µ +α∆kt+1

kt

= µ +α
[
s
yt
kt
− (δ+n)

]

= µ +αγ.

As ct = (1− s)yt , the rate of growth of consumption per capita is given by

∆ct+1

ct
= ∆yt+1

yt
.

Thus while the growth rates of per capita output and consumption are the same,
the growth rate of capital per capita may be different. If there is no technical
progress, the capital stock per capita will grow faster than per capita output
and consumption. Such a situation is called unbalanced growth.
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Balanced growth in the economy requires that per capita output, consump-
tion, and capital all grow at the same rate. Since

∆yt+1

yt
= ∆ct+1

ct
= µ + aγ,

∆kt+1

kt
= γ,

balanced growth requires that

γ = µ
1−α.

Thus, in this model, balanced growth is not possible unless there is technical
progress.

3.4 The Theory of Optimal Growth

3.4.1 Theory

Instead of considering how to maximize output per capita we now turn our
attention to the optimal level of consumption per capita when there is techni-
cal progress and population growth. This is rather like our earlier discussion
comparing the golden rule with the optimal solution. In the basic static model
we assumed implicitly that there was neither technical progress nor popula-
tion growth. As a result, the long-run solution was a static equilibrium—now
it will be a growth equilibrium. In other words, the previous solution {c∗, k∗}
becomes {c∗t , k∗t } as the equilibrium is growing over time.

The key to obtaining the growth solution is to reinterpret the previous closed-
economy model to take account of the changes we have made to the model.
Having done this, it can be shown that the two solutions are essentially the
same. For reasons that will become clear shortly, first we rewrite the production
function as

Yt = Kαt [(1+ µ)t/(1−α)Nt]1−α
= Kαt (N#

t )
1−α,

where N#
t = (1+µ)t/(1−α)Nt can be interpreted as effective labor input. Implic-

itly, this is equivalent to assuming that technical progress is labor augmenting,
i.e., it improves the productivity of labor. We recall that every member of the
population is assumed to work and that labor still satisfies Nt = (1 + n)tN0,
hence we can write

N#
t = (1+ µ)t/(1−α)Nt = [(1+ µ)1/(1−α)]t(1+n)tN0 = (1+ η)tN0,

where we have used the approximation

[(1+ µ)1/(1−α)]t(1+n)t � (1+ η)t,
η � n+ µ

1−α.
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We now define output and capital per effective unit of labor (either current
or base-period labor) to obtain

y#
t =

Yt
N#
t
= Yt
[(1+ µ)1/(1−α)]tNt =

Yt
(1+ η)tN0

,

k#
t =

Kt
N#
t
= Kt
[(1+ µ)1/(1−α)]tNt =

Kt
(1+ η)tN0

.

The production function can then be rewritten as

y#
t = k#α

t .

Thus, by working in output and capital per effective unit of labor, the production
function has been converted to the same form as we used previously. This was
the reason for introducing the transformations.

The national income identity is unaffected and can be written as

y#
t = c#

t + i#t ,

where

c#
t =

Ct
N#
t
= Ct
(1+ η)tN0

,

i#t =
It
N#
t
= It
(1+ η)tN0

.

By dividing the capital accumulation equation

Kt+1 = It + (1− δ)Kt

through by N#
t , it can be rewritten in terms of effective units of labor as

Kt+1

[(1+ µ)1/(1−α)]t+1Nt+1

[(1+ µ)1/(1−α)]t+1Nt+1

[(1+ µ)1/(1−α)]tNt
= It
[(1+ µ)1/(1−α)]tNt + (1− δ)

Kt
[(1+ µ)1/(1−α)]tNt ,

k#
t+1 = i#t + (1− δ)k#

t ,

(1+ η)k#
t+1 = i#t + (1− δ)k#

t .

The economy seeks to maximize

∞∑
s=0

βsU(Ct+s)

subject to

F(Kt) = Ct +Kt+1 − (1− δ)Kt.
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The utility function U(Ct) can be rewritten in terms of ct . Consider the power
utility function

U(Ct) = C
1−σ
t − 1

1− σ
= [(1+ η)

tN0c#
t ]1−σ − 1

1− σ
=
[c#1−σ
t − [(1+ η)tN0]−(1−σ)

1− σ
]
[(1+ η)tN0](1−σ).

Setting N0 = 1 for convenience, but without loss of generality, the problem
facing the economy can now be formulated as

max
ct+s ,kt+s

∞∑
s=0

β̃s
[c#1−σ
t+s − [(1+ η)]−(1−σ)t

1− σ
]
[(1+ η)](1−σ)t,

where β̃ = β(1+ η)1−σ , subject to

k#α
t = c#

t + (1+ η)k#
t+1 − (1− δ)k#

t .

The Lagrangian is

Lt =
∞∑
s=0

{
β̃s
[c#1−σ
t+s − (1+ η)−(1−σ)t

1− σ
]
(1+ η)(1−σ)t

+ λt+s[k#α
t+s − c#

t+s − (1+ η)k#
t+s+1 + (1− δ)k#

t+s]
}
.

Thus the first-order conditions are

∂Lt
∂c#
t+s

= β̃sc#−σ
t+s (1+ η)(1−σ)t − λt+s = 0, s � 0,

∂Lt
∂k#
t+s

= λt+s[αk#α−1
t+s + 1− δ]− λt+s−1(1+ η) = 0, s > 0.

Noting that for power utility

β̃U ′t+1

U ′t
= β̃

(c#
t+1

c#
t

)−σ
,

the Euler equation can be shown to be

β̃
(c#

t+1

c#
t

)−σ
[αk#α−1

t+1 + 1− δ] = 1+ η.

This is similar in form to the Euler equation for the static economy that was
derived previously, and reduces to the same Euler equation if η = 0.

In the presence of growth, the steady-state equilibrium condition is that the
rates of growth of consumption and capital per effective unit of labor are zero.
Thus ∆c#

t+1 = ∆k#
t+1 = 0 for each time period. In the absence of growth this

reduces to ∆ct+1 = ∆kt+1 = 0, the equilibrium condition for a static economy.
Hence, we obtain

β̃[αk#α−1
t+1 + 1− δ] = 1+ η.
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k* k* kη 0
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Figure 3.4. Optimal capital in a growth equilibrium.

This implies that

F ′(k#∗) = α(k#∗)α−1 = δ− 1+ 1+ η
β(1+ η)1−σ � δ+ θ + σ

(
n+ µ

1−α
)
,

where we have used a first-order Taylor series approximation:

η = n+ µ
1−α and β = 1

1+ θ .

The solution of k#∗ is depicted in figure 3.4. The optimal level of k#∗ can be
compared with the model with no growth by setting n = µ = 0. This would give
F ′(k#∗) = δ+ θ once again.

We have specified the model in sufficient detail to be able to derive an
expression for k#∗ explicitly. Approximately, this is

k#∗ �
(
σ(n+ (µ/(1−α)))+ δ+ θ

α

)−1/(1−α)
.

Although capital per effective unit of labor is constant along the equilibrium
path, Kt/Nt , the capital stock per capita of the economy is growing through
time. As

k#
t =

Kt
[(1+ µ)1/(1−α)]tNt ,

it follows that the optimal path for capital per capita is

Kt
Nt

=
(
σ(n+ (µ/(1− a)))+ δ+ θ

α

)−1/(1−α)
[(1+ µ)1/(1−α)]t.

Thus Kt/Nt grows at a rate of approximately µ/(1−α).
The optimal growth rate of output per capita, Yt/Nt , is determined from

y#
t =

Yt
[(1+ µ)1/(1−α)]tNt .

As y#
t = k#α

t and ∆k#
t+1 = 0, it follows that ∆y#

t+1 = 0 too. Thus, the growth rate
of Yt/Nt is also approximately µ/(1−α). The optimal growth rate of consump-
tion per capita, Ct/Nt , can be obtained from the condition that ∆ct+1 = 0 and
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c#
t = Ct/([(1 + µ)1/(1−α)]tNt). Thus the growth rate of Ct/Nt is also approxi-

mately µ/(1 − α). The optimal growth rates of total output, total capital, and
total consumption are obtained by taking into account population growth.
Adding on the growth rate of the population, we obtain their common rate
of growth η = n + (µ/(1 − α)). As the growth rates of output, capital, and
consumption are the same, the optimal solution is a balanced growth path.

3.4.2 Additional Remarks on Optimal Growth

The technical details of the solution to the problem of optimal growth may
obscure how simple an extension it is to the static solution. Because growth
is balanced, the steady-state growth paths of consumption, capital, output,
and investment are the same; all are growing at the constant rate η. The per
capita effective measures of these variables that we have introduced can be
reinterpreted as proportional to deviations from their optimal growth paths.
For example, if output on the optimal growth path is

Y∗t = (1+ η)tY0

= (1+ η)tN0
Y0

N0

= N#
t
Y0

N0
,

then

y#∗
t = Yt

N#
t
= Yt
Y∗t
Y0

N0
.

As a result, the solution is essentially the same as that for the zero-growth case
examined previously. These deviations have a static-equilibrium solution, and
the short-run dynamics of the original variables of the model are now defined
as deviations from the optimal growth path instead of about static equilibrium.
This observation suggests that we do not need to consider the full solution
about optimal growth paths in subsequent analysis. We can adopt the simplifi-
cation of working in terms of static solutions, and presume that this would also
describe dynamic behavior relative to the balanced steady-state growth path of
the economy.

Comparing the Solow–Swan model with the optimal growth solution, the
main similarity is that in equilibrium both have constant savings rates. This
is because the savings rate along the optimal growth path is given by

st = 1− Ct
Yt
= 1− c

#
t

y#
t
.

Hence, the behavior along the optimal growth paths is the same. The main
difference is that whereas the Solow–Swan model assumes a constant savings
rate at all times, and this rate is determined exogenously, the savings rate in
the optimal growth model is not determined exogenously, but is the result of
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preferences, technology, and the rates of depreciation and population growth.
To see this, we note that, along the optimal growth path,

y#
t = k#α

t ,

c#
t = k#α

t − (η+ δ)k#
t ,

k#
t =

(
ση+ δ+ θ

α

)−1/(1−α)
.

Hence, the savings rate is the constant

st = α(η+ δ)
ση+ δ+ θ =

α(n+ (µ/(1−α))+ δ)
σ(n+ (µ/(1−α)))+ δ+ θ .

Another difference between the two theories is in their implications for the
short run. In the optimal growth model, in the short run the savings rate can
deviate from its optimal level, whereas in the Solow–Swan model the savings
rate is held constant in the short run. The dynamic behavior of the optimal
growth model can be analyzed using the effective per capita definitions of
consumption and capital, or in terms of the proportional deviations of total
consumption and capital from their optimal growth paths. It follows that the
dynamic behavior of these deviations is a saddlepath. The Solow–Swan has the
same type of short-run dynamics as the golden rule, and hence is an unstable
solution.

3.5 Endogenous Growth

The theories above attribute economic growth to exogenous technical progress
and to population increases. The rate of technical progress is treated as beyond
the control of a country—it just happens. This is a useful simplification, but it
is not, of course, a correct account of growth. Most countries probably acquire
much of their new technology by importing it from other countries in the
form of new products, and by adopting new processing methods developed
elsewhere. Nonetheless, someone somewhere is developing the new technology.

Due to the diffusion of new technology through the world, with the conse-
quence that different countries can adopt the same technology, countries with
low unit costs of production—notably lower wage costs—will drive out those
with higher costs. The only way for high-wage countries to compete is for them
to innovate further, creating new products over which they have a degree of
monopoly pricing power and new technologies that are labor saving and hence
reduce unit costs. The implications are that technical progress is largely embod-
ied in new products, especially new capital investments, and that technical
progress occurs largely in developed countries, but that its advantages may
not be long lasting.

In order to produce a steady stream of innovations it is necessary to invest
in research and development activities and in human capital skills. In this
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way technical progress ceases to be exogenous, and becomes an endogenous
economic decision. Modern theories of growth are of this sort: see, for exam-
ple, Romer (1986, 1987, 1990), Rebelo (1991), and the surveys of Aghion and
Howitt (1998) and Barro and Sala-i-Martin (2004). There are many models of
endogenous growth.

3.5.1 The AK Model of Endogenous Growth

We consider the AK model of Romer (1986; see also McGrattan 1998). The name
derives from the assumption that the production function takes the simple
form

Yt = AKt, A > 0,

where Kt is interpreted here to mean all capital, including human capital. We
also note that technical progress may be embodied in new capital investment,
thereby making new capital more productive than old capital. Computers are an
obvious example. The key features of this model are that there is no exogenous
technical progress and that there are constant returns to scale with respect
to Kt .

We denote output per capita by yt and capital per capita by kt . Hence

yt = Akt.

It follows from earlier results (equation (3.1)) that the rate of growth of kt is

γ(kt) = st ytkt − (δ+n)
= stA− (δ+n).

If st = s, a constant, then the growth rate is constant. If sA > δ + n, then the
growth rate is constant and positive. Thus, unlike the earlier case, the rate of
growth is not falling as the capital stock increases. This result is due to the
assumption of a constant-returns-to-scale production function. Note also that
the rate of growth is independent of the initial level of the capital stock. This
implies that all countries, no matter their state of development (in particular,
the current level of the capital stock), can achieve a constant rate of growth.
The rate itself will depend upon the parameters s, A, δ, and n.

We have therefore shown that exogenous technical progress is not required
to achieve growth when output has constant returns to scale with respect to
total capital—physical and human. This result holds for both the Solow–Swan
theory and the theory of optimal growth.

3.5.2 The Human Capital Model of Endogenous Growth

A more transparent treatment of human capital and its role in economic
growth is obtained if we separate human capital from physical capital. Let ht
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denote human capital per capita and kt physical capital and suppose that the
production function per capita is

yt = Akαt h1−α
t , 0 � α � 1.

Note that there is no exogenous technical progress. We assume that capital accu-
mulation takes place as before, and that real resources are needed for human
capital accumulation. Thus write

∆kt+1 = ikt − δkt,
∆ht+1 = iht − δht,

where ikt and iht are the levels of investment in physical and human capital,
respectively. For convenience, we assume that the rate of population growth is
zero and that the rate of depreciation δ for human capital is the same as that
for physical capital. The national resource constraint satisfies

yt = ct + ikt + iht .

The instantaneous utility function is power utility.
The optimal solution is given by maximizing the Lagrangian

Lt =
∞∑
s=0

{
βs
c1−σ
t+s − 1

1− σ

+ λt+s[Akαt+sh1−α
t+s − ct+s − (kt+s+1 + ht+s+1)+ (1− δ)(kt+s − ht+s)]

}
.

The first-order conditions are

∂Lt
∂ct+s

= βsc−σt+s − λt+s = 0, s = 0,1,2, . . . ,

∂Lt
∂kt+s

= λt+s[αAkα−1
t+s h

1−α
t+s + 1− δ]− λt+s−1 = 0, s = 1,2, . . . ,

∂Lt
∂ht+s

= λt+s[(1−α)Akαt+sh−αt+s + 1− δ]− λt+s−1 = 0, s = 1,2, . . . .

It follows that the Euler equation is

β
(
ct+1

ct

)−σ[
αA
(
kt+1

ht+1

)−(1−α)
+ 1− δ

]
= 1

and that
kt+1

ht+1
= α

1−α,

a constant. Thus, in equilibrium we may write kt/ht = k/h, and hence

β
(
ct+1

ct

)−σ[
αA
(
k
h

)−(1−α)
+ 1− δ

]
= 1,
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and so the rate of growth of consumption γ(ct) is constant and is given by

γ(ct) = ∆ ln ct+1

= 1
σ

[
αA
(
k
h

)−(1−α)
− δ− θ

]
.

If we define

r k = αA
(
k
h

)−(1−α)
− δ = Aαα(1−α)1−α − δ,

where r k can be interpreted as the net rate of return to capital, then

γ(ct) = 1
σ
(r k − θ).

We also note that as kt/ht is constant the rates of growth of the two types of
capital are the same and, as growth is balanced, they are equal to the rate of
growth of consumption.

Finally, we note that if we substitute into the production function the result
that the optimal ratio of physical to human capital is constant, we obtain the
AK production function

yt = A∗kt,
with A∗ = A(α/(1−α))1−α.

3.6 Conclusions

We have argued that the behavior of most economies can be described as fluc-
tuations around a steady-state growth path and that economic welfare arises
largely as a result of growth. In comparison, the economic benefits from sta-
bilizing the economy so that it does not deviate much from the growth path
are small. We have shown that growth comes principally from three sources:
technological progress, labor force growth, and education (human capital for-
mation). We have found that balanced economic growth is not possible without
technological progress. We have also shown that self-sustaining growth is pos-
sible without exogenous technological progress by investing in human capital;
in effect, therefore, human capital accumulation is another way of describing
technical progress.
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4
The Decentralized Economy

4.1 Introduction

So far we have considered a stylized model of the economy in which a sin-
gle economic agent makes every decision: consumption, saving, leisure, work,
investment, and capital accumulation. An alternative interpretation we gave to
this model was that a central planner was making all of these decisions for each
person in the economy and was taking the same decision for everyone so that
there was, in effect, a single household (or person) or, more generally, repre-
sentative economic agent. In this interpretation there is no need for a market
structure as all decisions are automatically coordinated.

We now generalize this model by introducing a distinction between house-
holds and firms. Households will take consumption decisions, they will own
firms (and will therefore receive dividend income from firms), they will sup-
ply labor to firms, and they will save in the form of financial assets. Firms act
as the agents of households. They make output, investment, and employment
decisions, determine the size of the capital stock, borrow from households to
finance investment, pay wages to households, and distribute their profits to
households in the form of dividends. In separating the decisions of households
and firms we introduce a number of additional economic variables. In order
to coordinate the separate decisions of households and firms, we also need to
introduce product, labor, and capital markets.

As a result of making these changes, the model is becoming more recog-
nizable as a macroeconomic system. The model is also becoming considerably
more complex. To simplify the analysis, we delay considering labor issues. First
we consider household decisions on consumption and savings, taking the sup-
ply of labor as fixed. We then make the work/leisure decision endogenous.
Next we derive the firm’s decisions on investment, capital accumulation, debt
finance, and, after these, employment. We then show how markets coordinate
the separate decisions of households and firms to bring about general equilib-
rium in the economy. In the process we require markets for goods, labor, stocks,
and bonds. We find that the behavior of the decentralized economy when in gen-
eral equilibrium is remarkably similar to that of the basic representative-agent
model discussed previously.
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4.2 Consumption

4.2.1 The Consumption Decision

It is assumed that the representative household seeks to maximize the present
value of utility,

max
{ct+s ,at+s}

Vt =
∞∑
s=0

βsU(ct+s), (4.1)

subject to its budget constraint

∆at+1 + ct = xt + rtat, (4.2)

where, as before, ct is consumption, U(ct) is instantaneous utility (U ′t > 0 and
U ′′t � 0), the discount factor is 0 < β = 1/(1 + θ) < 1. at is the (net) stock
of financial assets at the beginning of period t; if at > 0 then households are
net lenders, and if at < 0 they are net borrowers. rt is the interest rate on
financial assets during period t and is paid at the beginning of the period, and
xt is household income, which is assumed for the present to be exogenous. At
this point we do not need to specify what at and xt are. Later, in the absence of
government, we show that at is solely corporate debt and xt is dividend income
from the ownership of firms. All of these variables continue to be specified in
real terms.

At the beginning of period t the stock of financial assets (and firm capital,
which is not a variable chosen by households) is given. Thus households must
choose {ct, at+1} in period t, {ct+1, at+2} in period t + 1, and so on. This is
equivalent to choosing the complete path of consumption, i.e., current and
all future consumption, {ct, ct+1, ct+2, . . . }. The main changes compared with
the basic model, therefore, are the replacement of the capital stock with the
stock of financial assets, the introduction of the interest rate explicitly, and
the replacement of the national resource constraint with the household budget
constraint.

The solution to this problem can be obtained, as before, using the method of
Lagrange multipliers. The Lagrangian is defined as

L =
∞∑
s=0

{βsU(ct+s)+ λt+s[xt+s + (1+ rt+s)at+s − ct+s − at+s+1]}. (4.3)

The first-order conditions are

∂L
∂ct+s

= βsU ′(ct+s)− λt+s , s � 0,

∂L
∂at+s

= λt+s(1+ rt+s)− λt+s−1 = 0, s > 0,

together with the budget constraint.
Solving the first-order conditions for s = 1 to eliminate λt+s gives the Euler

equation:
βU ′(ct+1)
U ′(ct)

(1+ rt+1) = 1. (4.4)
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Equation (4.4) is identical to the Euler equation derived for the basic model if
rt+1 = F ′(kt+1) − δ. This is why previously we interpreted the net marginal
product of capital, F ′(kt+1)− δ, as the real interest rate.

4.2.2 The Intertemporal Budget Constraint

The household’s problem can be expressed in another way. This uses the
intertemporal budget constraint, which is derived from the one-period bud-
get constraints by successively eliminating at+1, at+2, at+3, . . . . The budget
constraints in periods t and t + 1 are

at+1 + ct = xt + (1+ rt)at,
at+2 + ct+1 = xt+1 + (1+ rt+1)at+1.

Combining these to eliminate at+1 gives the two-period intertemporal budget
constraint

at+2 + ct+1 + (1+ rt+1)ct = xt+1 + (1+ rt+1)xt + (1+ rt+1)(1+ rt)at. (4.5)

This can be rewritten as

at+2

1+ rt+1
+ ct+1

1+ rt+1
+ ct = xt+1

1+ rt+1
+ xt + (1+ rt)at. (4.6)

Further substitutions of at+2, at+3, . . . give the wealth of the household as

Wt = at+n∏n−1
s=1 (1+ rt+s)

+
n−1∑
s=0

ct+s∏n−1
s=1 (1+ rt+s)

(4.7)

=
n−1∑
s=0

xt+s∏n−1
s=1 (1+ rt+s)

+ (1+ rt)at. (4.8)

Thus wealth can be measured either in terms of its source as the present value
of current and future income plus initial financial assets—equation (4.8)—or in
terms of its use as the present value of current and future consumption plus
the discounted value of terminal financial assets—equation (4.7).

Taking the limit of wealth as n → ∞ gives the infinite intertemporal budget
constraint. Wealth is finite provided the transversality condition

lim
n→∞

at+n∏n−1
s=1 (1+ rt+s)

= 0 (4.9)

holds. To aid understanding of the role of the transversality condition here,
consider the implication of having finite assets at time t +n. If consumed this
would give discounted utility of βnat+nU ′(ct+n). If the time horizon were t+n,
then, in the absence of a bequest motive, it would not be optimal to possess
assets in period t +n. Instead, they should all be consumed. Hence, as n → ∞
we have the extra optimality condition that

lim
n→∞β

nat+nU ′(ct+n) = 0.
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Since U ′(ct+n) is positive for finite ct+n, this implies that limn→∞ βnat+n = 0.
And as

βn = 1∏n−1
s=1 (1+ rt+s)

in the steady state, we obtain the condition (4.9).
When the interest rate is constant (equal to r ), wealth can be written as

Wt =
∞∑
0

ct+s
(1+ r)s =

∞∑
0

xt+s
(1+ r)s + (1+ r)at. (4.10)

An alternative way to express the household’s problem would be to maximize
Vt (equation (4.1)) subject to the constraint on wealth (equation (4.10)). This
would then involve a single Lagrange multiplier.

4.2.3 Interpreting the Euler Equation

An interpretation similar to that proposed in chapter 2 can be given to the
Euler equation. Again we reduce the problem to two periods, and then consider
reducing ct by a small amount dct and asking how much larger ct+1 must be to
fully compensate for this, i.e., in order to leave Vt unchanged. Thus we let

Vt = U(ct)+ βU(ct+1).

Differentiating Vt , and recalling that Vt remains constant, implies that

0 = dVt = dUt + βdUt+1 = U ′(ct)dct + βU ′(ct+1)dct+1,

where dct+1 is the small change in ct+1 brought about by reducing ct . The loss
of utility in period t is therefore U ′(ct)dct . In order for Vt to be constant, this
must be compensated by the discounted gain in utility βU ′(ct+1)dct+1. Hence
we need to increase ct+1 by

dct+1 = − U ′(ct)
βU ′(ct+1)

dct. (4.11)

All of this is the same as for the centralized model.
We now use the two-period intertemporal budget constraint, equation (4.5).

Assuming that the interest rate, income, and the asset holdings at and at+2 are
unchanged, the intertemporal budget constraint implies that

dct+1 = −(1+ rt+1)dct,

and hence that

−dct+1

dct
= 1+ rt+1. (4.12)

Combining (4.11) and (4.12) gives

−dct+1

dct
= U ′(ct)
βU ′(ct+1)

= 1+ rt+1, (4.13)

implying that
U ′(ct)(−dct) = βU ′(ct+1)[1+ rt+1]dct.
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ct + 1

ct + 1
*

*ct ct1 + rt + 1

Vt = U(ct) +   U(ct + 1)β

Figure 4.1. Two-period solution.

Thus the reduction in utility in period t due to cutting consumption and increas-
ing saving, U ′(ct)dct , is compensated by the discounted increase in utility in
period t+1 created by the interest income generated from the additional saving,
βU ′(ct+1)[1+ rt+1]dct+1.

Solely for the sake of convenience, we consider the case where the interest
rate is a constant equal to r in depicting the solution in figure 4.1. The maximum
value of ct occurs when ct+1 = 0 and we consume the whole of next period’s
income by borrowing today and repaying the loan with next period’s income.
The maximum value of ct+1 occurs when ct = 0 and we save all of the current
period’s income. Thus, from equations (4.5) and (4.6),

max ct = xt + xt+1

1+ r + (1+ r)at,
max ct+1 = (1+ r)xt + xt+1 + (1+ r)2at.

These determine the points at which the budget constraint touches the two axes.
The slope of the budget constraint is −(1 + r). The optimal solution occurs
where the budget constraint is tangent to the highest attainable indifference
curve.

An increase in income in either period t or t + 1 shifts the budget constraint
to the right and results in higher ct , ct+1, and Vt .

An increase in the interest rate (from r0 to r1) makes the budget constraint
steeper, as shown in figure 4.2. It also affects the maximum values of ct and
ct+1. If at = 0, then there is a decrease in the maximum value of ct (from c∗t,0
to c∗t,1) because the amount that can be borrowed on future income falls; and
there is an increase in the maximum value of ct+1, because the interest earned
by saving current income rises. The result is an intertemporal substitution of
consumption in which ct falls and ct+1 rises. The effect on Vt is ambiguous:
the point of tangency of the budget constraint may be on the same indifference
curve, one to the left (implying a loss of discounted utility), or one to the right
(implying a gain in discounted utility).

When at < 0, we obtain the same outcome, except that Vt is unambiguously
reduced. When at > 0, max ct+1 still increases, and if xt+1/(1+ r) < (1+ r)at ,
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ct + 1

ct + 1,0
*

ct,1
* ct,0

*

ct + 1,1
*

1 + r1 1 + r0
ct

Figure 4.2. The effect of an increase in the interest rate.

then max ct now increases. This would then result in higher ct , ct+1, and Vt ;
this case is depicted in figure 4.2. In practice, as most of household wealth is
in the form of pension entitlements, and this is sufficiently far in the future to
be heavily discounted, households probably behave in the short run as though
they are net debtors (i.e., as if at < 0). We conclude, therefore, that in practice
an increase in r is likely to cause ct to fall and ct+1 to rise.

4.2.4 The Consumption Function

What factors affect the behavior of consumption? We have shown already that
consumption in period t increases if income or net assets increase, and it is
likely to decrease if the interest rate increases. We now examine the behav-
ior of consumption in more detail. We consider the traditional consumption
function—the behavior of consumption in period t—together with the future
behavior of consumption along the economy’s optimal path.

First we examine the behavior of consumption on the optimal path. Exactly
what this means will become clear. First we take a linear approximation to the
Euler equations, (2.12) and (2.12). Using a first-order Taylor series expansion of
U ′(ct+1) about ct we obtain

U ′(ct+1)
U ′(ct)

� 1+ U
′′

U ′
∆ct+1

= 1− σ ∆ct+1

ct
, (4.14)

whereσ = −cU ′′/U ′ is the coefficient of relative risk aversion (CRRA). In general
the CRRA will be time-varying, but, again for convenience, we consider the case
where it is constant. Solving (2.12) and (4.14) we obtain the future rate of growth
of consumption along the optimal path as

∆ct+1

ct
= 1
σ

[
1− 1

β(1+ rt+1)

]
� rt+1 − θ
σ(1+ rt+1)

. (4.15)
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Thus, if rt+1 = θ, then optimal consumption in the future will remain at
its period t value. In this case households are willing to save until the rate of
return on savings falls to equal the rate of time discount θ. This is the long-run
general equilibrium solution. For interest rates below θ households prefer to
consume than save. In the short run, the interest rate will typically differ from
θ. If rt+1 > θ consumption will be growing along the optimal path, but this will
not be sustained due to the rate of return to saving falling. This is a result of
the diminishing marginal product of capital.

Consumption in period t—the consumption function—is obtained by com-
bining equation (4.15) with the intertemporal budget constraint (4.7). Again for
convenience we assume that the interest rate is the constant r . The general-
ization to a time-varying interest rate is straightforward. We also assume that
r = θ, its steady-state value, when optimal consumption in the future remains
at its period t value. This enables us to replace ct+s (s > 0) in equation (4.10)
by ct to obtain

Wt =
∞∑
0

ct+s
(1+ r)s =

(1+ r)
r

ct

=
∞∑
0

xt+s
(1+ r)s + (1+ r)at.

Hence

ct = r
1+ r Wt = r

∞∑
0

xt+s
(1+ r)s+1

+ rat. (4.16)

Equation (4.16) implies that consumption in period t is proportional to
wealth. This solution for ct is forward looking. It implies that an anticipated
change in income in the future will have an immediate effect on current con-
sumption. In general equilibrium, income is determined by capital so this solu-
tion is similar to that for the basic model. This solution has been called the
“life-cycle hypothesis” for reasons that will be explained later (see Modigliani
and Brumberg 1954; Modigliani 1970). It has also been called the “permanent
income hypothesis,” as the present-value term in income can be interpreted as
the amount of wealth that can be spent each period without altering wealth (see
Friedman 1957). It also implies that temporary increases in wealth should be
saved and temporary falls should be offset by borrowing.

In the special case where xt+s = xt (s � 0), the consumption function,
equation (4.16), becomes

ct = xt + rat. (4.17)

Thus, ct is equal to total current income, i.e., income from savings, rat , plus
income from other sources,xt . Equation (4.17) can be interpreted as the familiar
Keynesian consumption function. We note that it implies that the marginal and
the average propensities to consume are unity.
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We now have a complete description of consumption. The optimal path deter-
mines how consumption will behave in the future relative to current consump-
tion. The consumption function determines today’s consumption, and hence
where the optimal path is located. The same information is contained in the
consumption functions for periods t, t + 1, t + 2, . . . . Hence together they are
an equivalent representation to current consumption and the optimal path.

4.2.5 Permanent and Temporary Shocks

In our discussion of the effects on consumption of changes in income and
interest rates we have made no distinction between whether the changes are
permanent or temporary. It is vital to make this distinction as the results are
quite different. The policy implications of this are of great importance. First we
consider shocks to income.

4.2.5.1 Income

If, for convenience, we assume that the real rate of interest is constant, then,
in general, consumption is determined by equation (4.16). A permanent change
in income in period t will affect xt,xt+1, xt+2, . . . . If, again for convenience, we
assume that xt+s = xt (s � 0), then we can analyze the effect of a change in x.
In this case the consumption function simplifies to become equation (4.17). It
follows that both the marginal and the average propensities to consume follow-
ing a permanent change in income are unity, i.e., none of the increase in income
is saved. A permanent change in income is the prevailing state for an economy
that is growing through time.

A temporary change in income is analyzed using equation (4.16). We rewrite
the equation as

ct = r
1+ r xt +

r
(1+ r)2xt+1 + · · · + rat.

It follows that a change in xt (but not in xt+1, xt+2, . . . ) has a marginal propen-
sity to consume of only r/(1 + r). Hence, most of the increase in xt is saved
rather than consumed. We also note that an expected increase in xt+1 will also
cause ct to increase, but the marginal propensity to consume out of xt+1 is
r/(1+r)2, which is lower due to discounting income in period t+1 by 1/(1+r).
The effect on consumption of a permanent shock to income is the discounted
sum of current and expected future income effects.

Thus the Keynesian marginal propensity of unity implicitly assumes that the
change in income is permanent, not temporary. The importance of this distinc-
tion for policy is clear. A policy change (such as a temporary cut in income
tax) that is designed to affect income only temporarily will have little effect on
consumption.
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4.2.5.2 Interest Rates

First, we recall that the interest rate rt is the real interest rate. A permanent
change in real interest rates implies that rt, rt+1, rt+2, . . . all increase. This can
be analyzed using equation (4.17) and treated as an increase in r . The effect on
consumption depends on whether the household has net assets or net debts
(i.e., on whether at > 0 or at < 0). If at > 0 then interest income—and hence
total income—is increased permanently. The marginal propensity to consume
from this increase is unity as none of the additional interest income is saved.
But if at < 0 then debt service payments increase permanently and total income
decreases. Consumption will therefore fall.

A temporary increase in interest rates will be treated by households as though
it were a temporary change in income. For example, equation (2.1) shows that
an increase in rt just affects current interest earnings (or debt service pay-
ments). Hence, most of the additional interest income is saved, not consumed.
In contrast, an expected increase in rt+1 requires us to use equation (4.15).
It affects consumption by causing a substitution of consumption across time
(i.e., an intertemporal substitution). This was analyzed earlier. We recall that the
response of consumption depends on whether at is positive or negative. If it is
negative, and hence the household is a net debtor, then there is an unambigu-
ous decrease in ct and increase in ct+1. Thus, once again, there is an important
difference between a permanent and a temporary change.

In practice, real interest rates tend to fluctuate about an approximately con-
stant mean. This implies that a permanent increase in real interest rates is
improbable. At best, it might prove a convenient way of analyzing a change in
interest rates that is thought will last for many periods. The sustained rise in
stock market returns in the 1990s is a possible example. This continued for so
long that households may have treated it as more or less permanent. This may
explain why the savings rate fell over this period and why consumption did not
turn down when the stock market did. Perhaps consumers took the view that
the fall in the stock market would be temporary and so they tried to maintain
their level of consumption. Apart from relatively rare cases like this, it will usu-
ally prove more useful, especially for policy analysis, to treat the analysis of a
change in real interest rates as being temporary, and to suppose that the effect
of an increase in real interest rates will be to reduce current consumption.

4.2.5.3 Anticipated and Unanticipated Shocks to Income

Because consumption depends on wealth, and wealth is forward looking, unan-
ticipated future changes in income and interest rates will have no effect on
current consumption. But changes that are anticipated at time t will affect
current consumption. The distinction between anticipated and unanticipated
future changes in income helps to explain a confusion that prevailed for a time
in the literature.
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It was claimed that (4.15) was a rival consumption function to equation (4.16).
As equation (4.15) appeared to suggest that consumption would be unaffected
by income, it was seen as an inferior theory. For example, if rt+1 = r = θ, then
equation (4.15) implies that

ct+1 = ct, (4.18)

which does not involve income explicitly; ct+1 is just determined from know-
ledge of ct .

To see why this interpretation is incorrect consider the effect on consumption
of a permanent but unanticipated increase in income in period t+1. Thus there
is an increase in xt+1, xt+2, . . . . Taking the first difference of equation (4.17)
and noting that the stock of assets is unchanged, the consumption function for
period t + 1 can be written

ct+1 = xt+1 + rat+1

= ct + (xt+1 − xt)+ r(at+1 − at)
= ct + (xt+1 − xt).

If income remains unchanged (xt+1 = xt), then consumption would be un-
changed too and would satisfy equation (4.18). But if xt+1 > xt , then ct+1 > ct .
Thus consumption in period t+1 has responded to the unanticipated increase
in income in period t+1. From equation (4.16), if the increase in xt+1 had been
anticipated in period t, then ct would have changed too. As a result, knowledge
of ct would be sufficient for determining ct+1 as in equation (4.18), and there
would be no additional information possessed by income.

This illustrates the limitations of working with the assumption of perfect
foresight when, strictly, we should allow for uncertainty about the future.
Accordingly, we should write equation (4.18) as

Etct+1 = ct, (4.19)

where Et is the expectation conditional on information available up to and
including period t. If expectations are rational, then the expectational error

et+1 = ct+1 − Etct+1

is unpredictable from information dated at time t, i.e., Etet+1 = 0. This would
imply that consumption is a martingale process. (In the special case where
vart(∆ct+1) is constant the martingale process is given the more familiar name
of a random walk.) Equation (4.19) was first derived by Hall (1978).

We have shown therefore that equation (4.18) is not an alternative theory of
consumption, but is a description of the anticipated future behavior of con-
sumption relative to today’s consumption. Current consumption is given by
the consumption function, equation (4.16) or, when income is expected to be
constant, by equation (4.17). A complete description of consumption requires
both equation (4.16) and equation (4.18). Equation (4.18) is not therefore a rival
consumption function to equation (4.17).
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t

ct

Figure 4.3. The effect on consumption of
permanent and temporary shocks to income.

Figure 4.3 illustrates the argument. We plot the behavior of (log) consump-
tion against time. It has two features: its slope and its location. Consider the
lower segment. The movement of consumption along this segment is deter-
mined from the Euler equation; it is at a constant rate. The location of the
segment (i.e., its level) is determined by the consumption function. Suppose
that after a while there is a permanent positive shock to consumption due per-
haps to an increase in income. This will cause consumption to jump to the
higher segment. Consumption will then move along this segment, continuing
to grow at the same rate as before because the Euler equation is unaffected by
the jump. In contrast, a temporary positive shock to consumption would cause
consumption to rise above the lower segment briefly before returning to it and
then continuing along it at the old rate of growth, as shown by the dotted line.
And if the permanent increase in income had been anticipated earlier, then con-
sumption would have started to increase at that time. The path of consumption
would then be above the lower segment of figure 4.3 from the date when the
income change was anticipated and would join the upper segment smoothly
when the increase in income takes place.

4.3 Savings

We have been considering consumption—now we briefly consider savings. We
assume that the interest rate is the constant r . Savings are then

st = xt + rat − ct.
Eliminating ct using equation (4.16) we obtain

st = xt − r
∞∑
s=0

xt+s
(1+ r)s+1

= − r
1+ r

∞∑
s=1

xt+s − xt
(1+ r)s

= −
∞∑
s=1

∆xt+s
(1+ r)s+1

.
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This has a very interesting interpretation. It shows that saving is undertaken in
order to offset (expected) future falls in income. These could be temporary—for
example, due to spells of unemployment—or permanent—for example, due to
retirement. Thus, abstracting from an economy that is growing, saving enables
consumption to be kept constant throughout life.

4.4 Life-Cycle Theory

We have assumed so far that households are identical and live for ever. In fact,
due to the finiteness of lives, the age of households is one of the main causes
of differences in their behavior. A young household, possibly with dependants
and many years of work before retirement, will have different consumption
and savings patterns from old households, possibly already in retirement. Most
obviously, a typical household with young children will have high expenditures
relative to income, and so will have a low savings rate. A middle-aged household
will usually save more in order to generate an income in retirement. An old
household in retirement is likely to be dependent on past savings, such as a
(contributed) pension, and to dissave. Clearly, the theory above does not capture
all of these features. It can easily be modified, however, to reflect the main point
that consumption and savings depend on age. Further, if the age distribution
of the whole population is relatively stable, then, to a first approximation, we
may be able to ignore age when analyzing aggregate consumption and savings.

4.4.1 Implications of Life-Cycle Theory

Before modifying the theory, we note how it can be interpreted to reflect some
of these considerations. The key result is that consumption is in general a
function of wealth (equation (4.16)). Since wealth is the discounted sum of
expected future income over a person’s life plus current financial assets, it may
be expected to be fairly stable over time. This implies that consumption in each
period would be stable too and would be independent of a person’s age. Thus,
fluctuations in income due to unemployment or retirement, when income from
employment is zero, should not in theory affect current consumption. This is
why the theory above is called the life-cycle theory; in principle, it automatically
takes account of each household’s position in its life cycle.

Life-cycle theory makes a number of strong assumptions. In particular, it
assumes that the future can be anticipated reasonably accurately. Alternatively,
we could make the strong assumption that households hold assets whose pay-
offs vary between good and bad times in such a way as to offset unexpected
changes in income and, as a result, leave wealth unaffected.

Another critical assumption is that households are able to borrow to maintain
consumption even when current income and financial assets are insufficient to
pay for current consumption. In practice, a possibly substantial proportion of
households face a borrowing constraint that prevents them from doing this.



�

�

“wickens” — 2007/10/15 — 13:08 — page 66 — #84
�

�

�

�

�

�

66 4. The Decentralized Economy

0

1000

2000

3000

4000

5000

6000

7000

8000

50 55 60 65 70 75 80 85 90 95 00

RCONS
RDPI

Figure 4.4. U.S. total real consumption and real disposable income 1947–2003.
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Figure 4.5. U.S. total, nondurable, and durable real consumption 1947–2003.

Consequently, their consumption would be limited to their current income.
Their consumption would therefore tend to fluctuate with their income, rather
than be smoothed over time as life-cycle theory predicts. What does empiri-
cal evidence show? Figure 4.4 plots disposable (after-tax) income against total
consumption for the United States for the period 1947–2003. Figure 4.5 shows
total, real nondurable, and durable consumption.

Figure 4.4 suggests that total consumption is somewhat smoothed but still
fluctuates. The fluctuations in total consumption are not dissimilar to those in
income. Figure 4.5 reveals that the fluctuations in total consumption are due
much more to variations in durable consumption than to those in nondurable
consumption. Table 4.1 gives the standard deviations of the growth rates.

The table reveals that the standard deviation of total consumption is 66%
of that of disposable income, but the standard deviation of nondurable con-
sumption expenditures is 54% of that of disposable income. Significantly, the
standard deviation of nondurable consumption is only 3.5% of that of durable
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Table 4.1. Standard deviations in growth rates.

(%)

Disposable income 1.12
Total consumption 0.74
Nondurables and services 1.22
Nondurables 0.60
Durables 17.13

expenditures. We conclude that there is evidence of consumption smoothing,
but only of nondurable expenditures. Neither service nor durable expenditures
appear to be smoothed relative to income. We note, however, that unlike non-
durable and service expenditures, durable expenditures are not a flow variable
but a stock; it is the services from the durable stock that are a flow. Strictly
speaking, therefore, the theory derived above does not apply to durables. We
therefore reexamine the determination of durable consumption.

4.4.2 Model of Perpetual Youth

A modification to life-cycle theory that explicitly recognizes the household’s
finite tenure on life is the Blanchard and Fischer (1989) and Yaari (1965) theory
of perpetual youth. Each individual is assumed to have a constant probability
of death in each period of ρ, which is independent of age. The probability of
not dying in any period is therefore 1−ρ. The probability of dying in s periods’
time is the joint probability of not dying in the first s−1 periods multiplied by
the probability of dying in period s, i.e.,

f(s) = ρ(1− ρ)s−1, s = 1,2, . . . .

Thus, expected lifetime is

E(s) =
∞∑
s=1

sρ(1− ρ)s−1 = ρ−1.

Hence, in the limit as ρ → 0, lifetime is infinite, as in the basic model. If new-
borns have the same probability of dying in each period, then, for the population
size to be constant, births must exactly offset deaths. In practice, the average
lifespan has increased over time, implying that ρ has been falling over time.

As the date of death is unknown, households must make consumption and
savings decisions under uncertainty. We must therefore replace utility in period
t + s by the expected utility given that the household will still be alive. The
probability of being alive in period t+s is (1−ρ)s . The present value of expected
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utility is then

Vt =
∞∑
s=0

βs(1− ρ)sU(ct+s)

=
∞∑
s=0

β̃sU(ct+s),

where β̃ = β(1− ρ). Thus, the household objective function has the same form
as previously; only the discount rate has changed. We note that the optimal rate
of growth of consumption is then given by

∆ct+1

ct
= 1
σ

[
1− 1

β̃(1+ rt+1)

]
� rt+1 − (θ + ρ)
σ(1+ rt+1)

.

Thus, the prospect of death raises the minimum rate of return required to
induce saving, cuts the optimal rate of consumption growth, and raises con-
sumption levels. Since, in practice, the probability of death is not constant
but increases with age, we may expect relatively higher consumption by older
households, and net dissaving, especially among retired households.

To sum up, we can therefore proceed as before. We do not need to change
the previous analysis, but we should be aware of what interpretation we give to
the discount rate.

4.5 Nondurable and Durable Consumption

The key difference between nondurables and durables is that the former is
a flow variable while the latter is a stock that provides a flow of services in
each period. Moreover, the stock of durables depreciates over time due to wear
and tear and obsolescence. We now modify our previous analysis of household
consumption to incorporate these features.

In this section we denote real nondurable consumption by ct , the stock of
durables by Dt , and the total investment expenditures on durables by dt . The
accumulation equation for durables can be written as

∆Dt+1 = dt − δDt, (4.20)

where δ is the rate of depreciation. The household budget constraint is altered
to reflect the fact that the household purchases both nondurables and durables.
It is now written as

∆at+1 + ct + pD
t dt = xt + rtat,

where pD
t is the price of durables relative to nondurables and pD

t dt is the total
expenditure on durables measured in terms of nondurable prices. Thus the
budget constraint becomes

∆at+1 + ct + pD
t (Dt+1 − (1− δ)Dt) = xt + rtat. (4.21)
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Utility is derived by households from the services of nondurable and durable
consumption through U(ct,Dt), where Uc,UD > 0, Ucc,UDD � 0. This reflects
the fact that the greater the stock of durables, the greater the flow of services
from durables. If UcD > 0 nondurables and durables are complementary, and
if UcD < 0 they are substitutes.

The problem becomes that of maximizing

Vt =
∞∑
s=0

βsU(ct+s ,Dt+s),

with respect to {ct+s ,Dt+s+1, at+s+1; s � 0}, subject to equation (4.21) and the
durable accumulation equation (4.20). The Lagrangian is

L =
∞∑
s=0

{βsU(ct+s ,Dt+s)+ λt+s[xt + (1+ rt+s)at+s − ct+s
− pD

t+sDt+s+1 + pD
t+s(1− δ)Dt+s − at+s+1]}.

The first-order conditions are

∂L
∂ct+s

= βsUc,t+s − λt+s , s � 0,

∂L
∂Dt+s

= βsUD,t+s + λt+spD
t+s(1− δ)− λt+s−1pD

t+s , s > 0,

∂L
∂at+s

= λt+s(1+ rt+s)− λt+s−1 = 0, s > 0.

The first and third equations give the usual Euler equation, but now defined
in terms of nondurable consumption:

βUc,t+1

Uc,t
(1+ rt+1) = 1.

From all three equations we obtain

UD,t+1 = Uc,t+1pD
t+1(rt+1 + δ). (4.22)

If, for example, utility is Cobb–Douglas and given by

U(ct,Dt) = cαt D1−α
t ,

then the Euler equation becomes

β
(
ct+1/Dt+1

ct/Dt

)−(1−α)
(1+ rt+1) = 1 (4.23)

and equation (4.22) can be written as

ct+1

pD
t+1Dt+1

= α
1−α(rt+1 + δ). (4.24)

Equation (4.24) implies that an increase in the real rate of interest reduces the
value of the stock of durables relative to nondurable expenditures.
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In steady state, when ∆ct+1 = ∆Dt+1 = 0, we have rt+1 = θ. Hence

c
pDD

= α
1−α(θ + δ)

and the ratio of expenditures on nondurable consumption to durables in the
long run is

c
pDd

= α
1−α

θ + δ
δ
.

Short-run behavior is affected by the lag in the adjustment of the stock of
durables. Although nondurable and durable expenditures can instantly respond
to a period t shock, the stock of durables is given in period t and cannot respond
until period t + 1. For example, a permanent increase in income from period t
causes both nondurable and durable expenditures to increase in period t and a
permanent increase in all expenditures. The relative response of nondurable to
durable expenditures is obtained as follows. From equations (4.20) and (4.23)
the expenditure on durables relative to nondurables is

pD
t dt
ct

= ct+1

ct
PD
t Dt+1

ct+1
− (1− δ)P

D
t Dt
ct

=
[
ct+1

ct

(
1+ rt+1

1+ θ
)−1/(1−α)

− 1+ δ
]PD

t Dt
ct

�
[
∆ct+1

ct
− 1

1−α(rt+1 − θ)+ δ
]PD

t Dt
ct

.

The effect on this relative expenditure of an increase in ct , with Dt given, is
therefore determined by the sign of the term in square brackets. If this is neg-
ative, then the relative expenditure on durables in period t is greater. This
result seems to be supported by the evidence, which shows that the volatility
of durables is larger than that of nondurables.

4.6 Labor Supply

So far we have focused on the consumption and savings decisions of house-
holds, taking nonasset income as given. We now consider the household’s labor-
supply decision. This is a first step toward endogenizing nonasset income. This
will be followed by a discussion of the demand for labor by firms and the
coordination of these decisions in the labor market.

In the basic model of chapter 2 we assumed initially that households work for
a fixed amount of time. In the extension to the basic model we distinguished
between work and leisure, allowing a choice between the two. The wage rate
was only included implicitly. We now assume an explicit wage rate wt . Time
spent in employment nt generates labor income and therefore contributes to
consumption ct , but it is at the expense of leisure lt , which is also assumed
to be desirable to households. The total time available to households is unity,
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so nt + lt = 1. In contrast to our previous analysis of labor, we now write the
instantaneous utility function as

U(ct, lt) = U(ct,1−nt),
where Uc > 0, Ul < 0, Ucc � 0, Ull � 0, Un,t = −Ul,t , and the household budget
constraint is

∆at+1 + ct = wtnt + xt + rtat, (4.25)

wherewt is the real-wage rate per unit of labor time, xt is still treated as exoge-
nous income, and rt is the real rate of interest on net asset holdings at held at
the beginning of period t.

The Lagrangian is

L =
∞∑
s=0

{βsU(ct+s ,1−nt+s)

+ λt+s[wtnt + xt + (1+ rt+s)at+s − ct+s − at+s+1]}.
Maximizing with respect to {ct+s , nt+s , at+s+1; s � 0} gives the first-order
conditions

∂L
∂ct+s

= βsUc,t+s − λt+s , s � 0,

∂L
∂nt+s

= −βsUl,t+s + λt+swt+s , s � 0,

∂L
∂at+s

= λt+s(1+ rt+s)− λt+s−1 = 0, s > 0,

along with the budget constraint.
Solving the first two conditions for s = 0 and eliminating λt gives

Ul,t
Uc,t

= wt. (4.26)

Once consumption is determined, the supply of labor can be derived from this
as a function of consumption and the wage rate.

Consumption is derived much as it was before. From the first and third con-
ditions we obtain the same Euler equation as before, namely equation (2.12),
which for convenience we repeat:

βUc,t+1

Uc,t
(1+ rt+1) = 1. (4.27)

This is then combined with the intertemporal budget constraint associated with
the new instantaneous budget constraint (4.25). Assuming that the interest rate
is constant, we can show that

ct = r
1+ r Wt = r

∞∑
0

[
wt+snt+s
(1+ r)s+1

+ xt+s
(1+ r)s+1

]
+ rat, (4.28)
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where wealth is

Wt =
∞∑
0

[
wt+snt+s
(1+ r)s +

xt+s
(1+ r)s

]
+ (1+ r)at.

Hence, wealth includes discounted current and future labor income. Equa-
tions (4.26) and (4.28) and the labor constraint are three simultaneous equa-
tions in {ct+s , lt+s , nt+s}, from which the optimal levels of consumption and
the supply of labor can be obtained.

Consider the special case where wt+s = wt and xt+s = xt (s � 0). The
consumption function then becomes

ct = wtnt + xt + rat. (4.29)

Thus ct is once more equal to total current income, i.e., income from labor
wtnt as well as from savings rat and xt . The supply of labor is derived from
equations (4.26) and (4.29).

To illustrate, suppose that instantaneous utility is the separable power
function

U(ct, lt) = c
1−σ
t − 1

1− σ + ln lt,

where σ > 0, then

Uc,t = c−σt ,

Ul,t = 1
lt
.

Equation (4.26) becomes
1/(1−nt)
c−σt

= wt,

implying that the supply of labor is

nt = 1− c
σ
t
wt
. (4.30)

Consequently, given ct , an increase in wt will increase labor supply and hence
total labor income. However, from (4.28) an increase in labor income will
increase consumption, and from (4.30) an increase in consumption will reduce
the labor supply. This implies that the sign of the net effect of an increase in
the wage rate on the labor supply is not determined. This can also be shown by
combining equations (4.29) and (4.30) to eliminate ct and give the labor-supply
function:

nt = Ns(wt,xt, r , at).
It follows that

∂nt
∂wt

= 1
wt

(
1

σcσ−1
t + 1

−nt
)
,

where the sign is still not clear. However, the smaller consumption is, the more
likely it is that the sign will be positive. In contrast, an increase in xt , at , or r
will cause an unambiguous increase in ct , and hence a fall in the labor supply.



�

�

“wickens” — 2007/10/15 — 13:08 — page 73 — #91
�

�

�

�

�

�

4.7. Firms 73

4.7 Firms

Next we consider the decisions of the representative firm. Firms make deci-
sions on output, factor inputs (capital and labor), and product prices. They
also determine their financial structure—that is, whether to use equity or debt
finance—and the proportion of profits to disburse as dividends. We assume
that the representative firm seeks to maximize the present value of current
and future profits by a suitable choice of output, investment, the capital stock,
labor, and debt finance. In effect we are assuming that firms use debt, rather
than equity finance, and borrow from households. Consequently, firm debts are
household assets.

First we consider the problem in the absence of costs of adjustment of
labor. We then examine the effects of including labor costs of adjustment. We
recall that in chapter 2 we considered the cost of adjustment of capital in the
centralized model of the economy.

4.7.1 Labor Demand without Adjustment Costs

The present value of the stream of real profits discounted using a constant real
interest rate r is

Pt =
∞∑
s=0

(1+ r)−sΠt+s , (4.31)

where the firms’s real profits (net revenues) in period t are

Πt = yt −wtnt − it +∆bt+1 − rbt,
where wt is the real-wage rate, nt is labor input, and bt is the stock of out-
standing firm debt at the beginning of period t, i.e., bt is corporate debt and
it is held by households. As we are still working in real terms we have set the
price level to unity.

The production function depends on two factors of production,

yt = F(kt,nt),
and capital is accumulated according to

∆kt+1 = it − δkt.
Thus the net revenue of the firm is

Πt = F(kt,nt)−wtnt − kt+1 + (1− δ)kt + bt+1 − (1+ r)bt.
The firm therefore seeks to maximize its present value with respect to

{nt+s , kt+s+1, bt+s+1; s � 0}, where

Pt =
∞∑
s=0

(1+ r)−s{F(kt+s , nt+s)−wt+snt+s − kt+s+1

+ (1− δ)kt+s + bt+s+1 − (1+ r)bt+s}.
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The first-order conditions are

∂Pt
∂lt+s

= (1+ r)−s{Fn,t+s −wt+s} = 0, s � 0,

∂Pt
∂kt+s

= (1+ r)−s[Fk,t+s + 1− δ]− (1+ r)−(s−1) = 0, s > 0,

∂Pt
∂bt+s

= (1+ r)−s(1+ r)− (1+ r)−(s−1) = 0, s > 0.

The demand for labor is obtained from the usual condition that the marginal
product of labor equals the real wage,

Fn,t = wt,

and will depend on the stock of capital. For a given stock of capital and a given
technology, an increase in the wage rate will reduce the demand for labor.

The demand for capital is derived from

Fk,t+1 = r + δ

using the inverse function F−1
k,t+1(r + δ). Hence gross investment is

it = F−1
k,t+1(r + δ)− (1− δ)kt.

Consequently, an increase in the rate of interest reduces investment. An
increase in the marginal product of capital due, for example, to a permanent
technology shock raises the optimal stock of capital and investment. We note
that this solution implicitly assumes that there are no lags of adjustment in
investment. Investment and the capital stock instantaneously achieve their opti-
mal levels for each period. If there are additional costs to investing, as in Tobin’s
q-theory, then firms will prefer to take more time to adjust their capital stock
to the long-run desired level. As we saw in chapter 2, this introduces additional
dynamics into the investment and capital accumulation decisions, and through
these into the economy as a whole.

In the short term, the firm chooses the capital stock so that the net marginal
product of capital equals the cost of financing. This is also the opportunity
cost of holding a bond instead. In the long term (i.e., in general equilibrium),
households will be willing to save until the return to savings falls to the house-
hold rate of time preference θ. At this point Fk,t+1 − δ = θ, the same result we
obtained for the basic centralized model.

The condition ∂Pt/∂bt+s = 0 is independent of bt , and hence is satisfied
for all values of bt , including zero. Since any value of debt is consistent with
maximizing profits, the firm can choose between using debt finance or its profits
(i.e., retained earnings) when financing new investment. This is a version of the
Modigliani–Miller (1958) theorem.
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4.7.2 Labor Demand with Adjustment Costs

In effect, we have assumed that labor consists of the number of hours worked
per worker. A generalization of this would be to decompose labor into the num-
ber of workers and the hours they work. Individuals may choose whether or not
to work (the participation decision), and how many hours to work. In practice,
household choice may be constrained by firms to working full time, part time,
and/or overtime. Thus, it is firms that dominate the balance between the num-
ber of workers employed and the hours worked. The indivisible labor model of
Hansen (1985) assumes that hours of work are fixed by firms and individuals
simply decide whether or not to participate in the labor force. We modify this
by assuming that households can choose whether or not to work, but if they
do decide to participate in the labor force, the number of hours is chosen by
firms.

Since working more hours often involves having to pay a premium overtime
hourly wage rate, and hiring and firing entails additional costs, when adjusting
labor input, firms must trade off the cost of changing the workforce against
that of altering the number of hours worked. Intuitively, it may be less costly
to meet a temporary increase in labor demand by raising the number of hours
worked, while it may be cheaper to meet a permanent increase in labor demand
by increasing the number of workers. We construct a simple model of the firm
that illustrates how one might incorporate these features of the labor market.
For convenience we abstract from the capital decision and firm borrowing.

We assume that the firm’s production function is

yt = F(nt, ht),
where nt is the numbers of workers and ht the number of hours each person
works, and Fn, Fh > 0, Fnn, Fhh � 0, and Fnh � 0. Wages for each person are
W(ht) with W ′ � 0, W ′′ � 0 to reflect the need to pay higher hourly wage rates
the greater the number of hours worked by each person.

We also assume that there are costs to hiring and firing. The change in the
workforce can be written as

nt = vt − qt +nt−1,

wherevt represents total new hires and qt total quits. There are costs associated
both with taking on new employees and with firing existing workers. If vt = qt
there is no change in the labor force, yet there may still be hiring and firing
costs due to turnover in each period. These could vary over time. For example,
during a boom more workers may quit to find a better job and this may result
in further hires to replace them. For convenience, however, we simply assume
that there is a cost to changes in the total workforce, whether the workforce is
increasing or decreasing, and we ignore the problem of turnover. Accordingly,
we assume that the firm maximizes present value Pt , equation (4.31), where the
firms’s net revenues in period t are given by

Πt = F(nt, ht)−Wt(ht)nt − 1
2λ(∆nt+1)2.
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The last term reflects the cost of hiring and firing during period t. Our discus-
sion of turnover could be addressed by allowing λ to be higher when there is
a lot of labor turnover in the boom phase of the business cycle and lower in
recession when there is less turnover, but we assume that λ is constant.

The first-order conditions for maximizing Pt with respect to {nt+s , ht+s ;
s � 0} are

∂Pt
∂nt+s

= (1+ r)−s(Fn,t+s −Wt+s + λ∆nt+s+1)+ (1+ r)−(s−1)λ∆nt+s = 0,

∂Pt
∂ht+s

= (1+ r)−s(Fh,t+s −W ′
t+snt+s) = 0.

From the second first-order condition,

Fht
nt

= W ′
t . (4.32)

This implies that the marginal product of an extra hour per worker is equal to
the marginal hourly wage. We note that adjustment is instantaneous in equa-
tion (4.32). Given the number of workers, the equation gives their number of
hours of work. If there is only a single hourly wage rate, then W ′

t does not
depend on ht .

The second first-order condition gives the level of employment and can be
written as

∆nt = 1
1+ r ∆nt+1 + 1

λ(1+ r)(Fn,t −Wt) (4.33)

= 1
λ(1+ r)

∞∑
s=0

(1+ r)−s(Fn,t+s −Wt+s). (4.34)

Equation (4.34) shows that there will be an increase in the number of employees
if the marginal product of workers exceeds their total wages either today or in
the future. In steady state we have ∆nt = 0 when Fn,t = Wt . This is the usual
marginal productivity condition for labor, i.e., each worker is paid their marginal
product for the total number of hours worked.

Equation (4.33) can also be written in terms of the level of employment as

nt = 1
2+ r nt+1 + 1+ r

2+ r nt−1 + 1
λ(2+ r)(Fn,t −Wt). (4.35)

This shows that the firm’s adjustment of its number of employees takes place
over time. The greater the turnover of workers, the higher λ is and the slower
the adjustment of employment is.

Consider now the response of hours and employment to a permanent in-
crease in labor demand as measured by an increase in the marginal products
Fnt and Fht . To make matters clearer, assume that the production function can
be expressed in terms of man-hours as F(ntht). Thus, an increase in the number
of man-hours is required. Noting that Fht = F ′tnt and Fnt = F ′tht , in the long
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run

Fht
nt

= F ′t = W ′
t ,

Fnt = F ′tht = Wt.
Due to the convexity of the wage function,W ′

t � Wt/ht . Hence, it is more costly
to raise the number of hours per worker than to increase the number of workers.
Thus, in the long run, hours will stay constant and employment will increase.
But in the short run, as employment takes time to adjust, there will be a tempo-
rary increase in the number of hours. The response of hours and employment
to a temporary increase in labor demand depends on the cost of hiring and
firing relative to the cost of increasing hours worked.

4.8 General Equilibrium in a Decentralized Economy

General equilibrium is attained through markets coordinating the decisions of
households and firms. The goods market coordinates households’ consump-
tion decisions and firms’ output and investment decisions. The labor market
coordinates firms’ demand for labor and households’ supply of labor with the
real-wage rate equating labor demand and supply. Financial markets coordinate
households’ savings decisions and firms’ borrowing requirements through the
real interest rate. The bond market coordinates the savings in financial assets
of households and the borrowing by firms. In the absence of considerations of
risk, the price of bonds is determined by equating their rate of return in the
long run to the rate of time preference of households. And the stock market
prices the capital of firms so that its rate of return is the same as that on bonds.

4.8.1 Consolidating the Household and Firm Budget Constraints

Before examining general equilibrium in further detail, we consider what the
results so far imply for the various constraints on households and firms, and
how they can be combined, or consolidated. This enables us to determine a num-
ber of the variables defined above, such as exogenous income xt , household
assets at , firm debt bt , and profits Πt .

The national income identity is

yt = ct + it = F(kt,nt).
The household budget constraint is

∆at+1 + ct = wtnt + xt + rtat.
This includes labor income, exogenous income, and interest income. Combining
these with the capital accumulation equation

∆kt+1 = it − δkt
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gives
xt = F(kt,nt)−wtnt −∆kt+1 − δkt +∆at+1 − rat. (4.36)

For the firm, profits are

Πt = F(kt,nt)−wtnt −∆kt+1 − δkt +∆bt+1 − rbt. (4.37)

Subtracting equation (4.37) from equation (4.36) gives

xt −Πt = ∆(at+1 − bt+1)− r(at − bt).
Since households’ financial assets are firms’ debts, at = bt . This is the condition
for equilibrium in the bond market. (If firms issue no debt, then at = 0.) It then
follows that xt = Πt . Consequently, instead of xt being exogenous, as has been
assumed so far, we have shown that xt is the distributed profit of the firm, the
profits being distributed in the form of dividends.

As Fn,t = wt and Fk,t = r +δ for all t (as r and δ are constant) we can rewrite
firm profits as

Πt = F(kt,nt)− Fn,tnt −∆kt+1 − (Fk,t+1 − r)kt +∆bt+1 − rbt
= F(kt,nt)− Fn,tnt − Fk,tkt −∆(kt+1 − bt+1)+ r(kt − bt).

If the production function has constant returns to scale (or, alternatively,
approximating using a Taylor series expansion about nt = kt = 0),

F(kt,nt) = Fn,tnt + Fk,tkt.
Hence,

Πt = −(kt+1 − bt+1)+ (1+ r)(kt − bt), (4.38)

where kt − bt can be interpreted as the net value of the firm.
From equation (4.38), the net value of the firm can be rewritten as the forward-

looking difference equation

kt − bt = Πt + (kt+1 − bt+1)
1+ r .

As 1/(1+ r) < 1 we solve this equation forwards to obtain

kt − bt =
∞∑
s=0

Πt+s
(1+ r)s+1

,

where we assume that the transversality condition

lim
s→∞

kt+s − bt+s
(1+ r)s = 0

holds, implying that the discounted net value of the firm tends to zero. Thus
the value of the firm is the discounted value of current and future profits. If
profits are constant, and equal to Π, then this simplifies to

kt − bt = Πr .
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In other words, the net value of the firm, k − b, equals the present value of
profits, Π/r .

If all profits are distributed as dividends and not retained to finance invest-
ment, then k − b also equals the present value of total dividend payments.
Dividing k − b and Π/r by ns,t , the number of shares in existence at time t,
gives the standard formula for the value of a share, namely, the present value
of current and expected future profits (commonly called earnings) per share. If
all profits are distributed as dividends, and assuming that dividends per share
dt are expected to be the same in the future, the value of a share can also be
written as

kt − bt
ns,t

= dt
r
. (4.39)

Thus, dt = r((kt − bt)/ns,t), implying that dividend income is the permanent
income provided from the net value of the firm. The rate of return to capital is
r = Fk − δ, the net marginal product of capital. r is also the rate of return to
bonds and, as we have seen, in the long run this is equal to θ, the rate of time
preference of households, which limits their willingness to save, i.e., to lend
to firms. Financial markets therefore equate the rate of return on all forms of
capital and determine the income flows from assets. Later, in chapter 10, we
examine other aspects of the determination of asset prices and returns such as
risk considerations and the concept of no-arbitrage.

If some profits are retained for investment, then the value of a share will also
depend on the discounted net value of the firm at some point T > t in the
future and can be written

kt − bt
ns,t

=
T−1∑
s=0

dt+s
ns,t(1+ r)s+1

+ kT − bT
ns,t(1+ r)T+1

. (4.40)

If we assume that all profits are eventually distributed as dividends, then, as
T →∞, equation (4.40) reduces to equation (4.39).

4.8.2 The Labor Market

Abstracting from labor market adjustment costs and a nonlinear wage function,
the demand and supply for labor are determined, respectively, from

Fn,t = wt,
Un,t = −wtUc,t.

Real wages adjust to clear the market so that

wt = Fn,t = Un,tUc,t
.

This is a partial-equilibrium solution for labor as the marginal product of labor
and the two marginal utilities will, in general, depend upon other endoge-
nous variables, i.e., variables that are also determined within the economy.
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The full general equilibrium solution requires that each endogenous variable
is determined in terms of the exogenous variables.

This may be clearer if we employ particular functional forms. If, for example,
the production function is Cobb–Douglas with constant returns to scale, then

yt = Akαt n1−α
t

and so

Fn,t = (1−α)A
(
kt
nt

)α
,

implying that the demand for labor is

ndt =
[

wt
(1−α)A

]−α
kt,

where kt is given at time t. If the utility function is that considered previously,
namely,

U(ct, lt) = c
1−σ
t − 1

1− σ + ln(1−nt),
then the labor supply is

nst = 1− c
σ
t
wt
.

Thus, the supply of labor depends on an endogenous variable, ct . The equilib-
rium quantity of labor is

nt =
[

wt
(1−α)A

]−α
kt = 1− c

σ
t
wt
.

The equilibrium real wage can be derived from this. It does not have a closed-
form solution, but will depend on ct and kt . If the equilibrium real wage is

wt = w(ct, kt),
then the equilibrium quantity of labor is

nt =
[
w(ct, kt)
(1−α)A

]−α
kt

= n(ct, kt).
It also follows that, in equilibrium, labor income is

wtnt = wt − cσt
= f(ct, kt).

4.8.3 The Goods Market

Equilibrium in the goods market requires that aggregate demand equals
aggregate supply. Aggregate demand is

ydt = ct + it
= ct + kt+1 − (1− δ)kt
= ct + F−1

k,t (r + δ)− (1− δ)kt,
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where we have used the result that consumption is proportional to wealth, the
net marginal product of capital Fk,t − δ = r , and hence kt+1 is the inverse
function of r + δ. Assuming a Cobb–Douglas production function,

F−1
k,t (r + δ) =

[
αA
r + δ

]1/(1−α)
nt.

Hence,

ydt = ct +
[
αA
r + δ

]1/(1−α)
nt − (1− δ)kt.

We note that ct is proportional to wealth and so could be substituted.
Aggregate supply is obtained from the production function. Accordingly,

goods-market equilibrium can be expressed as

Akαt n
1−α
t = ct +

[
αA
r + δ

]1/(1−α)
nt − (1− r − δ)kt.

In steady state we have shown that

ct = wtnt + xt + rat
= wtnt +Πt + rat
= wtnt + rkt.

Aggregate supply is obtained from the production function. Consequently,
goods-market equilibrium becomes

Akαt n
1−α
t =

{
wt +

[
αA
r + δ

]1/(1−α)}
nt − (1− r − δ)kt.

This involves three variables: kt , nt , and wt . It can be solved together with the
three equations

wt = w(ct, kt)
= w∗(kt,nt, r),

nt = n(ct, kt)
= n∗(kt,nt, r),

kt =
[
αA
r + δ

]1/(1−α)
nt.

We then have the complete solution.

4.9 Comparison with the Centralized Model

We may summarize the similarities between the basic centralized model and
the decentralized model as follows. In the basic centralized model labor was not
included explicitly, although, in effect, there was a single unit of labor. Despite
this, the capital stock is determined in both the basic centralized model and
the decentralized model from the marginal product of capital, investment is
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derived from the capital accumulation equation, and consumption is obtained
from the national income identity.

In the centralized model capital is determined from the condition

F ′(kt+1) = θ + δ.
In the decentralized solution it is obtained from

Fk,t+1 = r + δ.
As there is just one unit of labor in the basic model, nt = 1. Hence either Fk,t+1

does not depend upon labor or, equivalently, F ′(kt+1) includes labor implicitly.
Further, in steady state, r = θ as households will continue to save, and firms
will continue to accumulate capital, until the return obtained falls to θ, when
households will not save any more and firms will no longer wish to accumulate
more capital. Thus, in the centralized model, there is an implicit real interest
rate, which is given by the net marginal product of capital:

r = F ′(kt+1)− δ.
Although there is no explicit wage rate in the basic model, there is an implicit

wage rate. As there is just one unit of labor in the basic model, the wage rate is
also equal to the total cost of labor. From

F(kt,nt) = Fn,tnt + Fk,t+1kt

and from the condition that the marginal product of labor is the real wage, and
also as nt = 1, we obtain the following expression for the implicit real wage in
the basic model:

wt = F(kt)− F ′(kt+1)kt. (4.41)

In the basic centralized model there are no debts or financial assets; there is
only capital, which is equity. An implicit measure of profits in the basic model
can be obtained from the definition of profits in the decentralized model. If we
define wt as in equation (4.41), set nt = 1, and bt = 0, then firm profits are

Πt = F(kt)− [F(kt)− F ′(kt+1)kt]−∆kt+1 − δkt.
Substituting F ′(kt+1) = θ + δ gives

Πt = −kt+1 + (1+ θ)kt.
Consequently, the value of the capital stock (equity) in the basic model is

kt = Πt + kt+1

1+ θ
=

∞∑
s=0

Πt+s
(1+ θ)s+1

,

namely, the discounted value of current and future profits. If profits are denoted
by the constant Π, then

kt = Πθ .
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Consumption is obtained in the basic model from the resource constraint:

ct = F(kt)− kt+1 + (1− δ)kt.
When nt = 1, it is also obtained from this equation in the decentralized model.

4.10 Conclusions

We have now seen how decisions can be decentralized and how markets, par-
ticularly labor and financial markets, coordinate decisions. This generalization
has added useful detail to the basic centralized model and it has allowed us
to include further variables such as saving, financial assets, the interest rate,
labor, and the real-wage rate, and it has made it easier to examine a number of
issues in greater depth. The analysis has also shown that the essential insights
of the basic centralized model are unchanged. As it is often easier to analyze
general equilibrium by using the basic centralized model than by using a decen-
tralized model, which tends to lead to an increase in detail without altering the
main conclusions, when it is convenient and the results are little affected, we
will revert to using a centralized model in preference to a decentralized model.
Further, we note that including labor caused only minor changes to the previous
results; consequently, we shall also exclude labor where feasible.

The decentralized general equilibrium model provides a benchmark against
which later models may be compared. This is not to say that the model is appro-
priate for analyzing every situation. We have still not introduced government,
money, nominal values, or taken account of economic transactions with the
rest of the world. Moreover, we have assumed that households and firms have
perfect foresight and that there are no market imperfections due, for example,
to monopoly power or frictions. It is the presence of these features that causes
most of the complications in setting monetary and fiscal policy: inflation con-
trol and macroeconomic stabilization. Without these it is debatable whether
active monetary and fiscal policy would even be required.
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Government: Expenditures and

Public Finances

5.1 Introduction

We now introduce government into our general equilibrium model. In this chap-
ter we focus largely on the role of government in steady-state equilibrium: its
expenditures and the implications of the government budget constraint for
financing these expenditures through taxes and debt. For completeness, we
include money and the general price level in the model at this stage but we
defer the analysis of money demand, monetary policy, and inflation until later
chapters.

The principal role of government is to provide public goods and services.
Most governments also transfer income from one group to another, usually in
pursuit of goals such as social equality or, less ambitiously, simply to improve
the welfare of the poorest. These expenditures must be paid for. This can be
achieved through taxation, or by borrowing (issuing debt to the public), or by
printing money (in effect, borrowing from the central bank). In reality, all three
financing methods are just different forms of taxation. Borrowing is deferred
taxation as debt must be repaid in the future, together with any interest pay-
ments. Printing money generally creates inflation, which imposes a tax due to
the loss of real purchasing power of nominal money holdings as prices rise.

A number of important new issues now arise. Ignoring the question of social
equity, why should government, rather than the private sector, provide goods
and services? What sort of goods and services should government provide,
and what sort should the private sector provide for itself? As debts must be
repaid in the future, in the longer term the current generation’s borrowing is
paid for from the taxes of tomorrow’s generation. This gives rise to the notion
that long-term borrowing involves intergenerational transfers. In what circum-
stances, therefore, is it justified for government to finance expenditures using
debt finance (deferred taxation) rather than current taxation?

A pure public good is one whose consumption by one person does not exclude
its consumption by others. The examples that are closest to being pure public
goods are defense, the legal system, policing, environmental protection, and
roads. Who should provide the public goods: the private sector or the govern-
ment? Since private provision by one person implies provision for all, and public



�

�

“wickens” — 2007/10/15 — 13:08 — page 85 — #103
�

�

�

�

�

�

5.1. Introduction 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Figure 5.1. U.S. (solid line) and U.K. (dashed line) government
expenditures as a proportion of GDP, 1901–2005.

goods are costly to produce, there is little or no incentive for any one individ-
ual to make the provision if someone else will do so instead. This suggests that
altruistic individuals would be necessary for any provision to be made. Every-
one else would then become a “free rider.” The outcome of leaving individuals
to supply public goods would be fewer—possibly far fewer—public goods than
would be required to maximize the welfare of the economy as a whole. One of
the main reasons for having a government is to solve this problem. The role of
the political system is to enable individuals to reveal their preferences about the
type and quantity of public goods that they want. Governments then make the
provision and share the cost among households. How cost is shared depends
on the method of financing.

Many states also provide goods and services that are not pure public goods.
For these government-supplied goods one person’s consumption may well be
at the cost of less consumption of these (or of other goods) by someone else.
Examples are government-provided education, health, and some forms of trans-
port. These goods and services are often provided by the state on the grounds
of equity or efficiency due to economies of scale. Frequently, their public provi-
sion is a source of political controversy. Apart from government expenditures
on goods and services, there are also government transfers arising from social
security benefits, such as unemployment compensation, family benefits, and
state pensions.

Most people take it for granted that government expenditures form a sub-
stantial proportion of GDP, yet this is a relatively recent phenomenon, as can
be seen from figure 5.1 which plots government expenditures as a proportion of
GDP for the United States and the United Kingdom since 1901. Real government
expenditures on goods and services and real social security benefits as a pro-
portion of GDP have increased considerably over the last century. In 1901 they
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were only 2.3% of GDP for the United States and 13.5% for the United Kingdom.
In most Western countries they increased from around 10–20% of GDP prior to
World War I to around 40–50% after World War II. The wars themselves were
the times of the greatest expansion in government expenditures. Since World
War II, the shares of government expenditures in GDP have not changed much,
and are not much affected by the business cycle. In contrast, real unemploy-
ment benefits vary countercyclically over the business cycle. On average, the
expenditures on goods and services and on transfers are roughly equal in size.
Total government expenditures also include interest payments on government
debt.

Government revenues are primarily tax revenues: direct taxes on incomes
and expenditure, social security taxes, and corporate taxes. The balance varies
somewhat between countries, but for most developed countries direct taxes
and social security taxes—which are in effect taxes on incomes—are about 60%
of total tax revenue, consumption taxes are about 25%, and corporate taxes are
about 10%. The average tax rate on incomes (including social security) is around
42%.

As previously noted, governments can raise additional revenues through bor-
rowing from the public or borrowing from the central bank, i.e., by printing
money. The government simply extends its overdraft on its account with the
central bank by the central bank cashing checks issued to the public by the
government.

It is common in macroeconomics without microfoundations, such as Keyne-
sian macroeconomics, to treat government expenditures as having no welfare
benefits. They are included simply to allow fiscal policy to be included in the
analysis and to allow the size of the fiscal multiplier to be calculated. In the
standard Keynesian model this is the effect on GDP of a discretionary change in
government expenditures. As this is tantamount to buying goods and services
and then throwing them away—or, as Keynes himself noted, burying them—
this is not a satisfactory formulation of fiscal policy. In our analysis we start by
including government expenditures in the household’s utility function. We can
then discuss the issue of the optimal level of government expenditures. This
is followed by an analysis of public finances: how best to pay for government
expenditures and satisfy the government budget constraint. We examine opti-
mal tax policy, optimal debt, and the sustainability of fiscal deficits (the fiscal
stance) in the longer term.

5.2 The Government Budget Constraint

5.2.1 The Nominal Government Budget Constraint

We begin by considering the government budget constraint (GBC), the sustain-
ability of the fiscal stance, and the implications of various fiscal rules, such
as the European Union’s Stability and Growth Pact. The nominal GBC can be
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written as

Ptgt + Ptht + BG
t = PB

t B
G
t+1 +∆Mt+1 + PtTt, (5.1)

where gt is real government expenditure, ht is real transfers to households, Tt
is total real taxes, and Mt is the stock of base, or outside, nominal money, i.e.,
non-interest-bearing money in circulation that is supplied by the government
(the central bank) at the start of period t. The total stock of money consists
of outside and inside money; inside money (mainly credit) is provided by the
commercial banking system.

If the government issues only 1-period bonds with a face value (value at matu-
rity) of unity, then BG

t is both the number of bonds issued at the start of period
t − 1 and the nominal expenditure made at the start of period t to redeem
these bonds. Thus BG

t is the value at maturity of the stock of nominal govern-
ment debt held by the public (households) during period t − 1. At the start of
period t the government issues BG

t+1 new bonds at a price of PB
t . As a result, it

borrows PB
t B

G
t+1.

The price of bonds can be written as

PB
t =

1
1+ Rt ,

where Rt is the rate at which one unit of currency is discounted in the next
period. It is also the nominal interest rate on government debt issued at the
start of period t but paid on the maturity of the bond in period t+1. Excluding
default risk (the risk that the government fails to redeem the bond despite its
promise to do so), Rt is a risk-free return that is known at time t. In practice, in
each period a government usually issues bonds that mature at different times
in the future. For convenience, here we assume that all bonds are issued for
one period.

More generally, bonds may be of longer maturity, and may pay a coupon υ
each period that is a proportion of the face value of the bond at maturity. Bonds
may also be sold prior to maturity. In this case we would define the return on
the bond through

1+ RB
t+1 =

PB
t+1 + υ
PB
t

.

At the time of purchase, in period t, PB
t+1 is unknown and so, therefore, is the

return on this investment, RB
t+1. This is why the return RB

t+1 is dated at time
t+1 and not t. As a result, RB

t+1 would be a risky return. We discuss the pricing
of bonds in more detail in chapter 10.

The left-hand side of equation (5.1) is total nominal expenditures and
the right-hand side is total revenues plus additions to the current financial
resources of the government. Although the central bank supplies the additional
money, we treat the central bank as an arm of government by consolidating the
central bank’s account with the government budget constraint.
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5.2.2 The Real Government Budget Constraint

The real government budget constraint can be derived from the nominal GBC
by dividing through the nominal GBC by the general price level Pt . This gives

gt + ht + bG
t = Tt + PB

t
Pt+1

Pt
BG
t+1

Pt+1
+ Pt+1

Pt
Mt+1

Pt+1
− Mt
Pt

= Tt + 1+πt+1

1+ Rt b
G
t+1 + (1+πt+1)mt+1 −mt

= Tt +πt+1mt + 1
1+ rt+1

bG
t+1 + (1+πt+1)∆mt+1,

where πt+1 = ∆Pt+1/Pt is the rate of inflation, bG
t = BG

t /Pt is the real stock of
government debt,mt = Mt/Pt is the real stock of money, and rt is the real rate
of interest defined by

1+ rt+1 = 1+ Rt
1+πt+1

,

which implies that rt+1 � Rt −πt+1.
The term πt+1mt measures the real resources accruing to the government

from holders of nominal non-interest-bearing money. It is known as “seignior-
age” and is in effect a tax. A government unable to raise revenues from any other
source can usually do so from seigniorage. The higher the inflation rate, the
more seigniorage the government obtains. At some point, of course, the infla-
tion rate may reach such a high level that people would cease to hold money,
in which case seigniorage revenues would collapse.

A very high rate of inflation is often thought to be due to a failure of mone-
tary policy. In fact it is more likely to signal a failure of fiscal policy. Countries
without an adequate tax base, like many of the ex-Soviet Union states in the
1990s and more recently Zimbabwe in 2007, were obliged to pay for expendi-
tures by printing money. In most low-inflation developed countries seigniorage
provides negligible revenue to the government.

To illustrate the relation between inflation and the pure-money financing of
fiscal expenditures, consider an economy in which the ratio of (base) money to
GDP is 0.2 and the proportion of GDP spent by government is 50%. To gen-
erate sufficient seigniorage revenues the rate of inflation would have to be
π = [(g+h)/y]/[m/y] = 250%. This is typical of the rates of inflation that ex-
Soviet Union states experienced before they established a conventional taxation
framework.

5.2.3 An Alternative Representation of the GBC

It is convenient for subsequent analysis to express the debt component of the
GBC so that it includes an explicit term for interest payments on government
debt. Accordingly, we rewrite the government revenue from bond sales in period
t as Bt+1 instead of PB

t B
G
t+1, and we denote expenditures in period t by (1+Rt)Bt
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instead of BG
t . We can now interpret RtBt as interest payments made at the start

of period t on government debt that was issued in period t − 1.
The nominal GBC therefore becomes

Ptgt + Ptht + (1+ Rt)Bt = Bt+1 +∆Mt+1 + PtTt, (5.2)

and the real GBC can be written as

gt + ht + (1+ Rt)bt = Tt + (1+πt+1)(bt+1 +mt+1)−mt, (5.3)

where bt = Bt/Pt . We shall use equation (5.3) in further analysis.

5.3 Financing Government Expenditures

We now consider alternative ways of financing government expenditures and
some of the implications for fiscal policy. We ignore money finance and focus
on tax and debt finance. The balanced-budget multiplier, a well-known result
derived from the traditional Keynesian model, is that a tax-financed permanent
increase in government expenditure permanently raises output and consump-
tion. We consider whether this result also holds in our dynamic general equi-
librium model. We also examine the effects of temporary fiscal policies and
whether using debt finance makes a difference. For simplicity, we ignore issues
related to money and inflation, and hence we assume that the interest rate is
constant.

5.3.1 Tax Finance

Consider first a permanent increase of ∆gt in government expenditures from
period t that is financed by an increase in lump-sum taxes of ∆Tt in period t.
The GBCs for periods t − 1, t, and t + 1 are

t − 1 : gt−1 + Rbt = Tt−1,

t : gt−1 +∆gt + Rbt = Tt−1 +∆Tt,
t + 1 : gt−1 +∆gt + Rbt = Tt−1 +∆Tt.

Thus, if government expenditures are raised permanently by ∆gt , then taxes
must be raised permanently by the same amount to satisfy the GBC. We now
examine the effect on consumption and GDP.

We have seen previously that consumption in the DGE model is propor-
tional to wealth, and not income as in the Keynesian model. If inflation is zero,
consumption and household wealth are

ct = R
1+ RWt,

Wt =
∞∑
s=0

(xt+s − Tt+s)
(1+ R)s + (1+ R)bt,
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where xt is income before taxes, which is assumed to be exogenous. If future
income and taxes are expected to remain at their time t levels, then xt+s = xt
and Tt+s = Tt for all s � 0. This implies that consumption is determined by
current total income:

ct = xt − Tt + Rbt. (5.4)

We now introduce a permanent increase in government expenditures in
period t. Since taxes also increase permanently by ∆T , consumption in periods
t − 1 and t is

ct−1 = xt−1 − Tt−1 + Rbt,
ct = xt − (Tt−1 +∆Tt)+ Rbt
= ct−1 −∆Tt
= ct−1 −∆gt.

The increase in government expenditure has therefore been fully offset by a
reduction in private consumption due to a fall in wealth caused by extra taxes.
If the national income identity at time t − 1 is

yt−1 = ct−1 + gt−1,

then
yt = ct−1 +∆ct + gt−1 +∆gt = yt−1.

As∆ct = −∆gt , GDP is unchanged. The fiscal stimulus has therefore been totally
ineffective as the injection of expenditure has been completely crowded out by
expected increases in taxes.

If the fiscal expenditure increase takes the form of an increase in transfers,
then higher taxes would completely offset the higher transfer income. There
would therefore be no change in wealth, consumption, or GDP because, for
unchanged income xt and a permanent increase in transfers of ∆ht , wealth in
period t would be

Wt = (1+ R)(xt + ht−1 +∆ht − Tt−1 −∆Tt)
R

+ (1+ R)bt = Wt−1.

We contrast this result with the standard Keynesian balanced-budget multi-
plier. The standard Keynesian consumption function assumes that consump-
tion is a proportion 0 < µ < 1 of total income, so that instead of equation (5.4)
we have

ct = µ(xt − Tt + Rbt).
It then follows that after the expenditure increase,

yt = µ(xt − Tt−1 −∆Tt + Rbt)+ gt−1 +∆gt
= yt−1 + (1− µ)∆gt > yt−1.

Thus, if 0 < µ < 1, then GDP would increase and fiscal policy would be effective
in the Keynesian model.



�

�

“wickens” — 2007/10/15 — 13:08 — page 91 — #109
�

�

�

�

�

�

5.3. Financing Government Expenditures 91

5.3.2 Bond Finance

We now assume that pure bond finance is used. Issuing more bonds raises gov-

ernment expenditures through the additional interest payments. We distinguish

between a permanent and a temporary increase in government expenditures.

5.3.2.1 A Permanent Increase of ∆gt in Period t

The sequence of government budget constraints in periods t − 1, t, t + 1, etc.,

following a permanent increase in government expenditures is

t − 1 : gt−1 + Rbt = Tt−1,

t : gt +∆gt + Rbt = Tt−1 +∆bt+1,

t + 1 : gt +∆gt + R(bt +∆bt+1) = Tt−1 +∆bt+2,
...

t +n− 1 : gt +∆gt + Rbt + R
n−1∑
s=1

∆bt+s = Tt−1 +∆bt+n.

Hence,

∆bt+n = (1+ R)n−1∆gt

and so

bt+n = bt +
n∑
s=1

∆bt+s

= bt + (1+ R)
[
(1+ R)n−1 − 1

R

]
∆gt.

Therefore,

bt+n
(1+ R)n =

bt
(1+ R)n +

[
1
R
− 1
R(1+ R)n−1

]
∆gt

and

lim
n→∞

bt+n
(1+ R)n =

1
R
∆gt ≠ 0.

As discounted debt is not zero, it follows that debt grows without bound.

This violates the intertemporal budget constraint. Hence, a bond-financed

permanent increase in government expenditures is not sustainable.
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5.3.2.2 A Temporary Increase of ∆gt (Or a Fall in T ) Only in Period t

The sequence of government budget constraints in periods t − 1, t, t + 1, etc.,
is now

t − 1 : gt−1 + Rbt = Tt−1,
t : gt−1 +∆gt + Rbt = Tt−1 +∆bt+1,

t + 1 : gt−1 + R(bt +∆bt+1) = Tt−1 +∆bt+2,
...

t +n− 1 : gt−1 + R
(
bt +

n∑
s=1

∆bt+s
)
= Tt−1 +∆bt+n,

where

∆bt+1 = ∆gt,
∆bt+2 = R∆gt,
∆bt+3 = R(1+ R)∆gt,

...

∆bt+n = R(1+ R)n−2∆gt.

Hence

bt+n = bt +
n∑
s=1

∆bt+s

= bt +
[

1+ R
n−2∑
s=0

(1+ R)s
]
∆gt

= bt + (1+ R)n−1∆gt,

bt+n
(1+ R)n =

bt
(1+ R)n +

1
1+ R∆gt,

and so

lim
n→∞

bt+n
(1+ R)n =

1
1+ R∆gt ≠ 0.

As discounted debt is not zero, fiscal policy is still not sustainable.
Suppose, however, that the temporary change in government expenditures

was a random shock, and that in each period there is a random shock with zero
mean, we can then write ∆gt = et , where E(et) = 0 and E(etet+s) = 0. As a
result, we now consider the average discounted value of debt, which is

lim
n→∞E

[
bt+n

(1+ R)n
]
= 1

1+ RE[∆gt] = 0.

Hence debt no longer explodes. We have shown, therefore, that bond-financing
temporary increases in government expenditures that are expected to be zero
on average (i.e., fiscal policy shocks) is a sustainable policy because positive
shocks are expected to be offset over time by negative shocks.
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A similar argument can be made with respect to the business cycle, where the
shocks may be serially correlated over time. If increases in expenditures during
periods of recession are offset by decreases in expenditures during boom, and
if these cancel out over a complete cycle, then debt finance can be used. In par-
ticular, there is no need to raise taxes during a recession, as many governments
seem to do, just because the government deficit is increasing. It is, however,
important that, when fiscal surpluses reappear in the upturn, these are used to
redeem debt and are not used to cut taxes. There are often strong pressures
on government to cut taxes during a boom, but it may be necessary to resist
these to avoid the accumulation of debt across cycles and hence to keep public
finances on a sustainable path in the longer term.

5.3.3 Intertemporal Fiscal Policy

Suppose the government wants to provide a temporary stimulus to the econ-
omy. One possible policy is to cut taxes today, finance this by borrowing today,
and then, as the stimulus is temporary, to restore tax revenues tomorrow. In
this way fiscal policy will be sustainable. What is the effect of this on the GBC
and on GDP?

Let the tax cut occur in period t, and assume that in period t + 2 the GBC of
period t−1 is to be restored. Consequently, the GBCs for periods t−1, t, t+1,
and t + 2 are

t − 1 : gt−1 + Rbt = Tt−1,

t : gt−1 + Rbt = Tt−1 +∆Tt +∆bt+1,

t + 1 : gt−1 + R(bt +∆bt+1) = Tt−1 +∆Tt+1 +∆bt+2,

t + 2 : gt−1 + Rbt = Tt−1,

where, due to the tax cut, ∆Tt < 0. Thus

∆bt+1 = −∆Tt,
∆bt+2 = −∆bt+1,

∆Tt+1 = R∆bt+1 −∆bt+2 = −(1+ R)∆Tt.
Hence, for bt+2 to be restored to bt−1, taxes must be increased in period t + 1
by −(1+ R)∆Tt .

It can be shown that wealth is unaffected by this as its values in periods t−1
and t are

Wt−1 =
∞∑
s=0

(xt+s−1 − Tt+s−1)
(1+ R)s + (1+ R)bt,

Wt =
∞∑
s=0

(xt+s − Tt−1 −∆Tt+s)
(1+ R)s + (1+ R)(bt +∆bt+1)

= Wt−1 −∆Tt − (1+ R)∆Tt(1+ R) = Wt−1.
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Hence consumption and GDP are also unaffected. The reason is that the tem-
porary tax decrease is initially funded by selling government bonds. In period
t+1 taxes are raised to redeem the bonds, to pay the extra interest charges, and
to restore the tax cut. As a result, the increase in taxes is greater than the initial
cut, but is equal to the initial tax cut in present-value terms. Forward-looking
households will therefore perceive no change in their wealth arising from the
fiscal stimulus, and so will not alter their consumption.

5.3.4 The Ricardian Equivalence Theorem

In the two examples above fiscal policy has been shown to be ineffective in rais-
ing either consumption or GDP. This is because the public has anticipated the
future tax increases required to balance the budget and has revised its current
wealth estimates accordingly. Thus, neither a government expenditure increase
funded by a lump-sum tax increase nor a temporary increase in taxes funded
initially by borrowing are effective ways to stimulate the economy. These exam-
ples are illustrations of what is known as the “Ricardian equivalence theorem,”
due to Barro (1974; see also Woodford 1995, 2001). Barro posed the ques-
tion of whether government bonds are net wealth to the private sector, and
took the view that they were not due to the public correctly anticipating the
implied future tax liabilities. The theorem is associated with David Ricardo, the
nineteenth-century economist, because Barro thought that Ricardo was the first
to put forward the idea that taxation and debt are equivalent in their effects on
the economy. Whether Ricardo really did believe this is a matter of dispute (see
Buchanan 1976; O’Driscoll 1977).

The prevailing view at the time, which was in contrast to the Ricardian equiva-
lence theorem, was based on the Keynesian model: it was that current consump-
tion depended only on after-tax current income and not on wealth. It would then
follow that if current income increases, then so would consumption and GDP.
The Keynesian model therefore assumes that future tax increases have no effect
on current consumption. This implies either that households are shortsighted
or that they face a borrowing constraint so that in each period their consump-
tion is limited to their current income, which they spend in full even though
they would prefer to borrow in order to consume more than this.

A counterexample to the Ricardian equivalence theorem is the overlapping-
generations (OLG) model, which is discussed in more detail in chapter 6. The
distinguishing feature of the OLG model is the length of a time period. Typically
people live for only two periods. The young pay taxes in both periods, but
the old only pay taxes in the first period. Both generations receive the current
benefits of the fiscal expansion (the tax cut), but only the young generation
expects to have to pay the tax increase when it takes place next period. In
this case, the old generation would increase their consumption in period t as
their wealth is increased by the tax cut. Assuming that next period there is a
new generation to share the tax burden with the current young generation and
that, as a result, the current tax cut is fully offset by higher taxes next period
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so that the wealth of the current young generation is unchanged, then they
would maintain their existing level of consumption. As a result, today’s total
consumption and GDP would increase.

More generally, time spent working is longer than time spent in retirement
and so more than two time periods are required. This permits the tax burden
to be shared with future generations, which would reduce the tax burden on
today’s young generation, and hence result in the current tax cut giving an
even greater stimulus to the economy. Moreover, the further in the future the
tax increase takes place, the greater the tax burden is on future generations and
the less it is on the current young generation and so, once again, the greater is
the current stimulus to the economy.

The OLG model is often a convenient analytic vehicle as it simplifies the
dynamics. Its main drawback is that it may distort time too much. For example,
unless the tax increase is expected to occur far into the future, all generations
would expect to have to pay the increase. In contrast, for reasons of intergen-
erational equity, government expenditures (typically capital expenditures) that
are expected to have long-lasting benefits for later generations should be partly
borne by these later generations rather than be paid for in full by the current
generation. This can be accomplished by financing the expenditures partly by an
increase in current taxes and partly by government borrowing to be redeemed
by the taxes of future generations. In this way, all generations would share the
cost.

We have seen that the greatest increases in government expenditures occur
during and immediately following wars. Since wars tend to be financed through
debt, there is usually also a substantial increase in the level of government debt:
see figure 5.2, which plots the debt–GDP ratios for the United States since 1790
and for the United Kingdom since 1695; the shaded areas are periods of war.
U.S. debt was high in 1790 following the American War of Independence (1775–
83). It increased substantially during the Civil War (1861–65) and World War I
(U.S. participation was from 1917 to 1918); it also increased during World War II
(U.S. participation was from 1942 to 1946) and more recently during the 1980s.
U.K. government debt rose steadily during the eighteenth century, especially
during the American War of Independence, and peaked during and after the
Napoleonic Wars (1792–1815). It is still possible to purchase consols issued to
finance the Napoleonic Wars. It then rose very sharply during and after World
War I (1914–18) and again during and immediately after World War II (1939–46).
After this, U.K. debt has been rapidly redeemed. The last loans from the United
States were paid off during 2006. One rationale for the use of debt to finance
wars is that, as future generations benefit from victory, they should share the
cost.

Whatever Ricardo’s views and the general applicability of the Ricardian equiv-
alence theorem, it has become a key proposition in DGE models of the economy
as it focuses attention both on the effectiveness of a debt-financed fiscal stim-
ulus to the economy and the relation between government debt and future net
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Figure 5.2. U.S. (solid line) and U.K. (dashed line)
government debt–GDP ratio, 1695–2005.

government revenues. It has even influenced government policy. For example,
recently, the U.K. government proposed a “golden rule” for public finance that
says that debt finance not associated with the business cycle may only be used
for government investment (but not consumption). Ultimately, of course, the
investment is tax financed. What is not stated is that this policy is equitable
only if future taxpayers also benefit from the investment. If the current gener-
ation also obtain benefit from the investment, then they too should make a tax
contribution. We now consider the longer-term sustainability of public finance
in more detail.

5.4 The Sustainability of the Fiscal Stance

Government expenditures can be financed either from taxes or by borrowing.
Whatever the balance between the two, the government budget constraint must
be satisfied at all times. In the short run this is usually achieved through debt
finance. For the private sector to be willing to hold government debt, especially
in the longer term, it must be confident that the debt will be redeemed. In
other words, the fiscal stance (public finances) must be sustainable. If the debt–
GDP ratio is expected to rise indefinitely, then concern that government would
be unable to meet its debt obligations without having to resort to monetizing
the debt—which carries with it the threat of generating high inflation, or even
hyperinflation—would be likely to cause the private sector to be unwilling to
hold government debt. Such a situation would arise if fiscal expenditures per-
sistently exceeded revenues by a sufficient margin. This could happen due to
either high government expenditures or low tax revenues as a result of a poor
tax base. If the private sector were unwilling to hold government debt, then the
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government would have to print money. If this situation continued, before long
it would lead to hyperinflation. As previously noted, this was what happened
in many of the former Soviet republics immediately after their independence.
More generally, it can be shown that a necessary condition for the sustainability
of the current fiscal stance is that government debt and the debt–GDP ratio are
expected to remain finite.

The European Union’s Stability and Growth Pact (SGP) and the United King-
dom’s golden rule of public expenditures are attempts to achieve a sustainable
fiscal stance. According to the SGP, no EU government is allowed a government
deficit in excess of 3% of GDP or a level of debt in excess of 60% of GDP. The
United Kingdom’s golden rule requires a balanced budget over the business
cycle. In other words, the ratio of debt to GDP should be constant over a com-
plete cycle. It also stipulates that the government will borrow only to finance
investment, not consumption, expenditures. We now consider the conditions
required for the fiscal stance to be sustainable and whether the EU and U.K.
fiscal rules make sense.

We begin by rewriting the government budget constraint in terms of propor-
tions of GDP. This is more convenient for a growing economy as these pro-
portions are likely to remain constant over time. The ratio of taxes to output
can then be interpreted as the average effective tax rate. Dividing through the
nominal government budget constraint, equation (5.2), by nominal GDP Ptyt
gives

Ptgt
Ptyt

+ Ptht
Ptyt

+ (1+ Rt)Bt
Ptyt

= PtTt
Ptyt

+ Bt+1

Ptyt
+ Mt+1

Ptyt
− Mt+1

Ptyt
. (5.5)

This can be rewritten as

gt
yt
+ ht
yt
+ (1+ Rt) btyt

= Tt
yt
+ (1+πt+1)(1+ γt+1)

(
bt+1

yt+1
+ mt+1

yt+1

)
− mt

yt
, (5.6)

where γt is the rate of growth of GDP and Tt/yt is the average tax rate.
The total nominal government deficit (or public-sector borrowing require-

ment, PSBR) is defined as

PtDt = Ptgt + Ptht + RtBt − PtTt −∆Mt+1; (5.7)

hence Dt/yt , the real government deficit as a proportion of GDP, is

Dt
yt

= gt
yt
+ ht
yt
+ Rt btyt −

Tt
yt
− (1+πt+1)(1+ γt+1)

mt+1

yt+1
+ mt

yt

= (1+πt+1)(1+ γt+1)
bt+1

yt+1
− bt
yt
. (5.8)

The right-hand side shows the net borrowing required to fund the deficit
expressed as a proportion of GDP.
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We also define the nominal primary deficit Ptdt (the total deficit less debt
interest payments) as

Ptdt = Dt − RtBt. (5.9)

Hence the ratio of the primary deficit to GDP is

dt
yt
= gt
yt
+ ht
yt
− Tt
yt
− (1+πt+1)(1+ γt+1)

mt+1

yt+1
+ mt

yt

= −(1+ Rt) btyt + (1+πt+1)(1+ γt+1)
bt+1

yt+1
. (5.10)

Equations (5.8) and (5.10) are both difference equations that determine the
evolution of bt/yt . One is expressed in terms of the total deficit, the other in
terms of the primary deficit. Since the nominal rate of growth πt+1 + γt+1 is
nearly always strictly positive, equation (5.8) is an unstable difference equation
and hence must be solved forwards. In contrast, equation (5.10) could be a
stable or an unstable difference equation, depending on whether

1+ Rt
(1+πt+1)(1+ γt+1)

is greater than (unstable) or less than (stable) unity. If the difference equation
is stable, then bt/yt will remain finite. But if it is unstable, then bt/yt could be
finite or infinite. A finite debt–GDP ratio is necessary (but not sufficient) for the
private sector to be willing to hold government debt. An exploding debt–GDP
ratio is sufficient for the fiscal stance to be unsustainable. We therefore wish to
find the conditions under which bt/yt remains finite.

We begin by examining equation (5.10). For simplicity, we assume that Rt , πt ,
and γt are constant. A more general analysis that allows these variables to be
time-varying can be found in Polito and Wickens (2007). It then follows that

dt
yt
= gt
yt
+ ht
yt
− Tt
yt
− (1+π)(1+ γ)mt+1

yt+1
+ mt

yt

= −(1+ R)bt
yt
+ (1+π)(1+ γ)bt+1

yt+1
.

The debt–GDP ratio therefore evolves according to the difference equation

bt
yt
= − 1

1+ R
dt
yt
+ (1+π)(1+ γ)

1+ R
bt+1

yt+1
. (5.11)

5.4.1 Case 1: [(1 + π)(1 + γ)]/(1 + R) > 1 (Stable Case)

In this case the rate of growth of nominal GDP is greater than the nominal rate
of interest, i.e., R < π + γ. We therefore write the GBC, equation (5.11), as the
difference equation

bt+1

yt+1
= 1+ R
(1+π)(1+ γ)

bt
yt
+ 1
(1+π)(1+ γ)

dt
yt
. (5.12)
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As 0 < (1 + R)/[(1 + π)(1 + γ)] < 1, this is a stable difference equation, and
hence can be solved backwards by successive substitution. For n > 0 we obtain

bt+n
yt+n

=
(

1+ R
(1+π)(1+ γ)

)n bt
yt

+ 1
(1+π)(1+ γ)

n−1∑
s=0

(
1+ R

(1+π)(1+ γ)
)n−s−1dt+s

yt+s
.

Taking the limit as n→∞ and noting that

lim
n→∞

(
1+ R

(1+π)(1+ γ)
)n bt
yt
= 0,

we obtain

lim
n→∞

bt+n
yt+n

= 1
(1+π)(1+ γ)

∞∑
s=0

(
1+ R

(1+π)(1+ γ)
)n−s−1dt+s

yt+s
. (5.13)

We now examine the implications of equation (5.13).

5.4.2 Implications

1. In the special case where the ratio of the primary deficit to GDP is expected
to remain unchanged in the future, i.e.,

dt+s
yt+s

= dt
yt

for s � 0,

equation (5.13) becomes

lim
n→∞

bt+n
yt+n

= 1
(1+π)(1+ γ)− (1+ R)

dt
yt

� 1
π + γ − R

dt
yt
> 0. (5.14)

Hence, if π + γ > R, the debt–GDP ratio will remain finite regardless of
the initial value of dt/yt . Hence fiscal policy is sustainable for any value
of dt/yt . There can even be a permanent primary deficit (i.e., d/y > 0)
and the debt–GDP ratio will be constant.

2. In principle, fiscal sustainability only requires that the debt–GDP ratio
remains finite and that the market is willing to hold government debt. In
general, therefore, dt+s/(yt+s) can vary over time. As the debt–GDP ratio
rises, however, fears of default may increase. Prudential reasons therefore
tend to limit the acceptable size of this ratio. As a result, it is common in
practice to impose an upper limit on the debt–GDP ratio, as in the SGP. The
precise choice of upper limit is inevitably somewhat arbitrary. The market
may be willing to continue to hold government debt for higher values of
the debt–GDP ratio than that prescribed by the SGP. When fiscal policy is
not sustainable at the announced limit, there may be a temptation to raise
the limit. The drawback is that doing this repeatedly would damage the
credibility of fiscal policy.
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3. Although not strictly necessary, in order to give fiscal policy greater
clarity—and hence make it more accountable—a government might wish
to achieve a particular debt–GDP ratio in period t + n. This might be the
same value as for period t. The government might even go a step fur-
ther and want both bt/yt and dt/yt to be constant for all future t. From
equation (5.14) this would imply that the following condition should be
satisfied:

bt
yt

� 1
π + γ − R

dt
yt
. (5.15)

The equality sign in equation (5.14) has been replaced by an inequality sign
as the fiscal stance is sustainable provided the evolution of debt (as given
by the right-hand side) does not exceed the target debt–GDP ratio. More
generally, this enables us to find the debt–GDP ratio for any constantdt/yt
and any constant value of π +γ−R that is positive. In other words, fiscal
sustainability may be satisfied, but at a different value of the debt–GDP
ratio from the one that was wanted.

4. We could have obtained this result directly from the GBC, equation (5.11),
by rewriting it as

(1+π)(1+ γ)∆bt+1

yt+1
= −(π + γ − R)bt

yt
+ dt
yt
= 0.

If the debt–GDP ratio is constant, then ∆(bt+1/yt+1) = 0. We then obtain
equation (5.15).

5. Not only may the fiscal stance be sustainable when there is a permanent
primary deficit, there may also be a permanent total deficit. As

Dt
yt

= dt
yt
+ R bt

yt

we have

bt
yt

� 1
π + γ − R

dt
yt

� 1
π + γ − R

(
Dt
yt
− R bt

yt

)

� Dt/yt
π + γ . (5.16)

Dt > 0 implies that fiscal sustainability is also consistent with hav-
ing a permanent total deficit. In particular, often regarded as a require-
ment for sound fiscal policy, a balanced budget is unnecessary for fiscal
sustainability.

5.4.3 Case 2: 0 < [(1 + π)(1 + γ)]/(1 + R) < 1 (Unstable Case)

In this case R > π + γ: the nominal rate of interest is greater than the rate
of growth of nominal GDP. The GBC is now an unstable difference equation. It
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must therefore be solved forwards, not backwards, as follows:

bt
yt
=
(
(1+π)(1+ γ)

1+ R
)
bt+1

yt+1
− 1

1+ R
dt
yt

=
(
(1+π)(1+ γ)

1+ R
)n bt+n
yt+n

− 1
1+ R

n−1∑
s=0

(
(1+π)(1+ γ)

1+ R
)s dt+s
yt+s

.

Taking limits as n→∞, if

lim
n→∞

(
(1+π)(1+ γ)

1+ R
)n bt+n
yt+n

= 0, (5.17)

then
bt
yt

� 1
1+ R

∞∑
s=0

(
(1+π)(1+ γ)

1+ R
)s(−dt+s

yt+s

)
, (5.18)

where −dt > 0 is the primary surplus. We introduce the inequality sign because
a present value of current and future surpluses that exceeds the current debt–
GDP ratio is also consistent with fiscal sustainability. The terminal condition,
equation (5.17), is known as the no-Ponzi condition. It rules out funding debt
interest payments by issuing more debt. (A Ponzi game is a pyramid system
in which contributors are paid interest on their investments and the interest
payments are paid from the investments of new contributors. At some point
the pyramid will, of course, collapse due to an insufficient number of new
investors.)

5.4.4 Implications

1. The right-hand side is the present value of current and future primary
surpluses as a proportion of GDP. Thus, for fiscal sustainability, these
must be sufficient to meet current debt obligations. This allows dt/yt to
vary through time. One of the factors that causes dt/yt to vary is the
business cycle; dt/yt tends to be positive in a recession and negative in
a boom. A practical way to interpret the condition for fiscal sustainability
is to require that the present value of primary surpluses over a complete
business cycle is zero. As a result, the debt–GDP ratio would rise during a
recession, fall during a boom, but remain constant over the whole cycle.
This is the basis of the U.K. government’s golden rule for fiscal policy.

2. In the special case where

dt+s
yt+s

= dt
yt

for all s > 0

we find that

bt
yt

� 1
1+ R

∞∑
s=0

(
(1+π)(1+ γ)

1+ R
)s(−dt

yt

)
� 1
R −π − γ

(−dt
yt

)
. (5.19)

When the equality sign holds this is the same result as in the stable case,
except that because the sign of R− (π +γ) is now reversed, the sign of d
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is also reversed (i.e., we need surpluses to pay off the debt). The inequality
sign reflects the fact that a positive present value will also allow current
debts to be paid off. We note that the inequality sign in the unstable case
is the opposite of that in the stable case. The reason for the difference is
that in the stable case future primary deficits must not cause the future
debt–GDP ratio to exceed a given upper limit, whereas in the unstable
case future primary surpluses must be large enough to meet current debt
liabilities.

3. Again, although it is necessary to have primary surpluses, it is still possible
to have a total deficit. As

Dt
yt

= dt
yt
+ R bt

yt
we have

bt
yt

� 1
R −π − γ

(−dt
yt

)
(5.20)

� 1
R −π − γ

(
R
bt
yt
− Dt
yt

)

� Dt/yt
π + γ . (5.21)

This is identical to equation (5.16)—even the inequality sign is the same.
Three cases may be distinguished:

(i)
b
y
>

1
π + γ

D
y
, falling debt–GDP ratio,

(ii)
b
y
= 1
π + γ

D
y
, constant debt–GDP ratio,

(iii)
b
y
<

1
π + γ

D
y
, rising debt–GDP ratio.

The first two are sustainable fiscal stances, but the third—where the debt–
GDP ratio is rising—is ultimately unsustainable.

4. Consider what would happen if a government had existing debts but
maintained a zero primary deficit (i.e., dt/yt = 0). In order to meet the
interest charges on existing debt, the government must issue more debt.
Debt would therefore accumulate without limit. In this case the budget
constraint can be written as

bt
yt
= (1+π)(1+ γ)

1+ R
bt+1

yt+1

and hence
bt
yt
= lim
n→∞

(
(1+π)(1+ γ)

1+ R
)n bt+n
yt+n

.

This no-Ponzi game condition implies that only zero initial debt would
be consistent with this limit tending to zero, and hence satisfy equa-
tion (5.17). If initial debt is not zero, then a primary surplus is required,
otherwise debt will grow too fast.
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5.4.5 The Optimal Level of Debt

As a final observation on these results we note that although they tell us how to
run fiscal policy to sustain a given level of debt, and what the debt consequences
will be of running a given deficit, they do not tell us what the optimal level of
debt is. In effect, we are taking the current debt–GDP ratio as given; sustainable
fiscal policy simply seeks to maintain this debt–GDP ratio. In practice, countries
have different debt–GDP ratios. This suggests that a country can change its
debt–GDP ratio if it wishes, and this too would be sustainable at an appropriate
level of the fiscal deficit compatible with the sustainability condition above.

Sargent and Wallace (1987), in an article entitled “Some unpleasant arith-
metic,” have suggested that there is an upper limit to the debt–GDP ratio
above which financial markets would not be willing to hold more government
debt. Beyond this point, they argue, the government would need to use money
finance. The title of their paper reflects the possibility that the resulting rate
of growth of the money supply may exceed the target set by the monetary
authority. This is an example of how fiscal policy may destabilize monetary
policy.

Further references on fiscal sustainability are Bohn (1995), Polito and Wickens
(2007), and Wilcox (1989).

5.5 The Stability and Growth Pact

The European Union’s SGP sets upper limits on the debt–GDP ratio and the total
deficit as a proportion of GDP. The maximum value of b/y = 0.6 (60% of GDP)
and the maximum value of D/y = 0.03 (3% of GDP). What implications does
this have for fiscal sustainability? From equation (5.16),

bt
yt

� 1
π + γ

Dt
yt
,

60 � 1
π + γ 3,

π + γ � 3
60

≡ 5.

Thus, even if the debt and deficit limits of the SGP are achieved, for the fiscal
stance to be sustainable, the nominal rate of growth must not be less than 5%.
If nominal growth were less than this, then debt would rise above 60% even if
the deficit limit were satisfied. It follows that the SGP is not sufficient for the
sustainability of the fiscal stance.

Nor is the SGP necessary for a sustainable fiscal policy either. Even if the
deficit or debt limits were exceeded, there is a rate of nominal growth that would
be consistent with fiscal sustainability. For example, if the deficit exceeds 3%, it
is still possible for the debt–GDP ratio to meet the 60% limit if nominal growth
exceeds 5%. And if the debt–GDP ratio exceeds 60%, but the deficit satisfies 3%,
then sustainability could be satisfied with a nominal growth rate less than 5%.
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Consider the case of Belgium in 1993, when the SGP was first enshrined in
the Maastricht Treaty. Belgium’s fiscal stance was

b
y
= 145%,

D
y
= 6.5%, R = 7.8%, π + γ = 4.

Clearly Belgium broke both the debt and deficit limits and therefore did not
satisfy the SGP. But was its fiscal stance nonetheless sustainable? The answer
is no, as

bt
yt
= 1.45 � 1

π + γ
Dt
yt

= 0.065
0.04

= 1.63.

Belgium did not satisfy fiscal sustainability—it would have done so had its rate
of growth of nominal GDP been a little higher at 4.5%, or had the deficit been
only 5.8%.

Since we have data on the nominal interest rate, and this exceeds the nominal
rate of growth of GDP (as 7.8 > 4), we can calculate the primary deficit and
evaluate the sustainability condition expressed in terms of the present value of
current and future primary surpluses. The primary deficit is

dt
yt
= Dt
yt
− R bt

yt
= 0.065− 0.078× 1.45 = −0.048.

Hence, in 1993 Belgium had a primary surplus. The present-value condition for
fiscal sustainability is

bt
yt

� 1
R −π − γ

(−dt
yt

)
,

1.45 � 0.048
0.038

= 1.26,

implying that the present value of current and future primary surplus is not
expected to be sufficient to pay off current debt. The present-value condition
has therefore given the same result as the total-deficit condition. Had the nomi-
nal interest rate been 3.6%, a considerably lower figure, then fiscal sustainability
would have been satisfied. To sum up, in 1993 not only did Belgium not satisfy
the Maastricht conditions or the SGP, it did not have a sustainable fiscal policy
stance, however measured. We have also seen that a small increase in the rate of
growth of nominal GDP, a small reduction in the deficit, or a considerably lower
nominal interest rate would have made fiscal policy sustainable. Nevertheless,
despite failing these tests, Belgium has continued to be able to sell its debt.

More recently, France and Germany have had difficulties meeting the require-
ments of the SGP. This led to attempts to impose substantial fines on them in
accordance with the enforcement provisions of the SGP. Data for 2002 are given
in table 5.1.

For fiscal sustainability we require that the value in the last row of the table
should be less than the current debt–GDP ratio. We note that this is not satisfied
for either country. The problem for each country is that although the SGP is
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Table 5.1. Fiscal sustainability of France and Germany in 2002.

France (%) Germany (%)

D/y 3.1 3.6

b/y 59.1 60.8

π 1.9 1.3

γ 1.2 0.2

1
π + γ

D
y

100 240

almost satisfied, the rate of growth of nominal GDP is too low. The rates of
nominal growth would need to be 5.2% for France and 5.9% for Germany. Given
the prevailing rates of growth of nominal GDP in France and Germany, they
would have needed to reduce their deficits below 3% to satisfy the debt–GDP
limit. Thus although they meet the debt and deficit criteria of the SGP, the fiscal
positions of France and Germany did not satisfy fiscal sustainability.

5.6 The Fiscal Theory of the Price Level

We have interpreted the condition for fiscal sustainability whenR > π+γ as the
requirement that current liabilities (i.e., outstanding debt) match the expected
present value of net revenues (primary surpluses). An implicit assumption is
that to achieve this a government may need to alter its fiscal stance in order
to generate appropriate primary surpluses and reduce the total deficit. A pol-
icy that accomplishes this has been named “Ricardian.” In contrast, a “non-
Ricardian” policy is said to be one in which the current fiscal stance is taken as
given—even though it may not satisfy the government’s intertemporal budget
constraint—yet despite this, equilibrium is automatically maintained. This is
said to come about due to the “fiscal theory of the price level” (FTPL).

The FTPL asserts that the government’s intertemporal budget constraint will
be satisfied automatically for some value of the current price level, and that
the price level will adjust instantly to this level to achieve this (see Sims 1994;
Woodford 1995, 2001). Moreover, this is said to be true even when there is no
money in the system. According to FTPL the price level is determined, therefore,
not by the quantity of money in the economy, but by fiscal considerations, hence
the name of the theory.

To illustrate this, consider the government’s intertemporal budget constraint:
equation (5.18). This can be rewritten as

Bt
Pt
= yt

1+ R
∞∑
s=0

(
1+π + γ

1+ R
)s(−dt+s

yt+s

)
,
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and can be solved for Pt for any given values of {Bt, dt,yt,π,R}. We then obtain

Pt = Bt
yt

1+ R
∞∑
s=0

(
1+π + γ

1+ R
)s(−dt+s

yt+s

) .

Consequently, if the outstanding nominal value of government debt exceeds the
denominator, then the FTPL says that the price level would automatically, and
instantaneously, increase. In this way, the government’s intertemporal budget
constraint would always be satisfied.

The intriguing aspect of this theory is that the price level is determined by
fiscal policy, not monetary policy. How plausible is this theory? It is implicitly
assumed that the price level is perfectly flexible so that it can adjust instan-
taneously. In practice, however, price adjustment is not instantaneous. Rather,
prices are sticky, taking time to adjust. This is one of the main reasons why
monetary policy has strong real effects in the short run. The FTPL does not,
therefore, seem a useful theory of price determination in the short term. In the
long run all variables in the intertemporal budget constraint are endogenous,
and adjust to achieve general equilibrium, not just the price level.

5.7 Optimizing Public Finances

So far our discussion of fiscal policy has focused on issues related to the gov-
ernment budget constraint, and whether the current fiscal stance is sustainable
in the sense that it satisfies the intertemporal budget constraint. We have seen
that the answer to this depends on the choice of fiscal instruments: the levels
of government expenditures, tax revenues, tax rates, and government debt. We
now discuss the optimal choice of these instruments for a government seek-
ing to maximize household welfare while constrained to satisfy the GBC. We
also constrain the government to respect the decision framework of the private
sector. We then ask whether or not optimal government policy distorts the deci-
sions of the private sector by altering its behavior. As we wish to impose the
optimal decision framework of the private sector on the government, we carry
out the analysis using, in the main, a decentralized model of the economy.

To start with, however, we examine the optimal level of government expen-
ditures, funded either by lump-sum or proportional taxes, using a centralized
model of the economy in which a social planner is assumed to optimize all deci-
sions on behalf of each individual. We then consider a decentralized economy
in which the private sector and the government act separately. The analysis
is considerably more complicated in a decentralized economy because of the
need to take account of the sequence of decision making between the private
sector and government. The private sector makes its decisions given govern-
ment expenditures and tax rates; the government then chooses the rates of
taxation of consumption, income, and capital earnings to maximize social wel-
fare taking into account how the private sector responds to taxes. After this
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we revisit the issue of the optimal level of debt. Finally, we summarize these
findings through a discussion of the key ingredients that make up an optimal
fiscal policy.

5.7.1 Optimal Government Expenditures

5.7.1.1 Lump-Sum Taxation

We assume that the government chooses its level of expenditures to maximize
household utility and it satisfies its budget constraint by the use of lump-sum
taxes. Government debt may be set to zero, at which point the government
budget constraint becomes gt = Tt . To keep the analysis as simple—and hence
as transparent—as possible, first we derive the optimal solution based on a
centralized version of the economy. It can be shown that the same solution
occurs in a decentralized economy.

We assume that households gain utility from both private and public expen-
ditures. As a result, we write the household’s utility function as

U(ct+s , gt+s), Uc > 0, Ucc � 0, Ug > 0, Ugg � 0, Ucg � 0.

This implies that ct and gt are substitutes. In a centralized economy, the
government’s problem is to choose ct , kt , and Tt to maximize

∞∑
s=0

βsU(ct+s , gt+s)

subject to the economy’s resource constraint

F(kt) = ct + kt+1 − (1− δ)kt + gt
and the government budget constraint. It is unnecessary to introduce the GBC
explicitly as it is already incorporated into the national resource constraint, but
we do so to illustrate what happens if we do.

The Lagrangian for this problem is

L =
∞∑
s=0

{βsU(ct+s , gt+s)+ λt+s[F(kt+s)− kt+s+1 + (1− δ)kt+s − ct+s − gt+s]
+ µt+s(gt+s − Tt+s)}.

The first-order conditions are

∂L
∂ct+s

= βsUc,t+s − λt+s = 0, s � 0,

∂L
∂kt+s

= λt+s(Fk,t+s + 1− δ)− λt+s−1 = 0, s > 0,

∂L
∂gt+s

= βsUg,t+s − λt+s + µt+s = 0, s � 0,

∂L
∂Tt+s

= −µt+s = 0, s � 0.
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The last first-order condition implies that, as µt+s = 0 for s � 0, using lump-
sum taxation does not affect the other marginal conditions, and hence is said
to be nondistorting of household behavior. Lump-sum taxes are simply set so
that Tt = gt .

The first-order conditions for consumption and capital are familiar and lead
to the usual solutions for ct and kt , but with the additional presence of gt . The
Euler equation is

βUc,t+1

Uc,t
(Fk,t+1 + 1− δ) = 1.

In the long run Fk,t − δ = θ and ct is obtained from

ct = F(kt)− δkt − gt.
Our present interest, however, lies more in the optimal solution for gt . This

is obtained from the first-order conditions for consumption and government
expenditures, which imply that

Ug,t = Uc,t.
In general, therefore, the optimal level of gt is a function of only ct .

We consider two special cases.

1. ct and gt are perfect substitutes.

In this case the utility function can be written as U(ct + gt). Households
are therefore indifferent about the division between ct and gt . As house-
holds would provide these goods for themselves, there appears to be
no good reason why government should provide them instead. And if it
were more costly for government to provide them—possibly due to dead-
weight administrative costs—then it would certainly not be optimal for
government to do so.

2. gt is a public good.

In the case of a pure public good, providing a level of real expenditures
of gt for one household is equivalent to providing gt for all households.
Thus, instead of duplicating the good or service for all households, they
can be provided just once. This reduces the cost of provision. Assum-
ing government can avoid the free-rider problem, this cost can be shared
among all households. As a result, the level of tax revenues that would
support government expenditure on pure public goods is a fraction of
the cost that households would face if they provided them themselves.

In practice, government expenditures have a mixture of private-good and
public-good characteristics. Services such as health and education tend to have
a higher private-good component; policing and defense have a higher public-
good content. The greater the public-good content, the higher the proportion
supplied by government should be.
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5.7.1.2 Proportional Taxation

In principle, taxes may be lump-sum or proportional, and these may be levied
at a fixed or time-varying rate. The main attraction of lump-sum taxes is that
they do not affect the marginal conditions of households and, as a result, are
nondistorting. The fact that they are not distorting is also the source of their
main disadvantage. As lump-sum taxes are the same for all, irrespective of
income or wealth, they are regressive and hence take a higher proportion of
the total income (or expenditures, in the case of consumption taxes) of lower-
income households than of higher-income households. In practice, therefore,
governments raise tax revenues almost entirely through proportional taxes.

Consider imposing a proportional tax on output. The GBC is then

gt = τtF(kt),
where τt is the rate of tax. It can be shown that this would produce the same
outcome as for lump-sum taxes, and hence would be nondistorting. The first-
order condition with respect to τt replaces that with respect to Tt+s and is

∂L
∂τt+s

= −µt+sF(kt+s) = 0.

Hence, for kt+s > 0, once more we have µt+s = 0 for s � 0. The tax rate τt+s
must therefore be set so that the government budget constraint is satisfied
each period. The optimal solution is τt = gt/f(kt) and hence varies with the
proportion of output purchased by government.

If τt = τ , a constant, then, unless the ratio of government expenditures to
GDP remains constant, in general the government budget constraint would
not be satisfied without government borrowing. In this case, the first-order
condition with respect to a constant rate of tax τ would be

∂L
∂τ

= −
∞∑
s=0

µt+sF(kt+s) = 0.

This may be satisfied even if µt+s ≠ 0 for some s, which would then affect the
optimal solution. We conclude, therefore, that having a constant proportional
tax rate will, in general, be distorting.

5.7.2 Optimal Tax Rates

We have previously noted that, in most countries, over half of total tax revenue
comes from labor income (income and social security taxes) and just under a
third comes from consumption (sales) taxes. The rest is made up mainly from
taxes on capital income (profits and savings taxes). We therefore consider the
optimal rates of tax for labor income, consumption, and capital.

There is now an important difference in our method of analysis that marks a
further step toward greater realism. Instead of using the centralized model
in which a social planner acts on behalf of each individual, the analysis is
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now based on a decentralized model of the economy in which decisions are
taken sequentially. First the private sector determines consumption, labor, and
capital, etc., taking the government’s decisions on expenditure and taxation
as given. The government then chooses its expenditure and taxation to opti-
mize social welfare subject to its budget constraint and the marginal condi-
tions derived by the private sector. In equilibrium, the private sector correctly
anticipates the government’s decisions. Our analysis is based on Chari et al.
(1994) and Chari and Kehoe (1999). (See also Chamley (1986), Judd (1985), and
Ljunqvist and Sargent (2004).)

5.7.2.1 The Household’s Problem

We begin by considering the decisions of households, taking tax rates as given.
Distinguishing between the various types of taxation, the household budget
constraint can be written as

(1+τc
t )ct+kt+1+bt+1 = (1−τw

t )wtnt+[1+(1−τk
t )r

k
t ]kt+(1+r b

t )bt, (5.22)

where ct is consumption, kt is equity capital, bt is government debt, wt is the
average wage rate, nt is employment (leisure is lt = 1 − nt), r k

t = Fk,t − δ is
the rate of return to equity capital, and r b

t is the rate of return on government
debt. All variables are real. τc

t , τ
w
t , and τk

t are the rates of tax on consumption,
wage income, and capital income, respectively. The real rate of return to capital
was determined in our earlier discussion of the decentralized economy. We can
either think of government debt as not being taxed because its rate of return
is determined by the government, or we can interpret r b

t as an after-tax rate of
return where the rate of tax is chosen by the government.

As we have introduced taxes on labor, we include leisure in the household
utility function and we include labor in the production function. For conve-
nience, we no longer include government expenditures explicitly in the utility
function. We assume that the production function is homogeneous of degree
one and that factors are paid their marginal products. Hence,

F(kt,nt) = Fk,tkt + Fn,tnt
= (r k

t + δ)kt +wtnt.
The resource constraint can therefore be written as

r k
t kt +wtnt = ct + kt+1 − kt + gt. (5.23)

The household’s problem is to maximize intertemporal utility subject to its
budget constraint. The Lagrangian for this problem can be written as

L =
∞∑
s=0

{
βsU(ct+s , lt+s)+ λt+s[(1− τw

t+s)wt+snt+s + [1+ (1− τk
t+s)r

k
t+s]kt+s

+ (1+ r b
t+s)bt+s − (1+ τc

t+s)ct+s − kt+s+1 − bt+s+1]
}
.
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The first-order conditions are

∂L
∂ct+s

= βsUc,t+s − λt+s(1+ τc
t+s) = 0, s � 0,

∂L
∂nt+s

= −βsUl,t+s + λt+s(1− τw
t+s)wt+s = 0, s � 0,

∂L
∂kt+s

= λt+s[1+ (1− τk
t+s)r

k
t+s]− λt+s−1 = 0, s > 0,

∂L
∂bt+s

= λt+s(1+ r b
t+s)− λt+s−1 = 0, s > 0.

From the first-order conditions for consumption and leisure we obtain

Ul,t+s
Uc,t+s

= (1− τ
w
t+s)wt+s

1+ τc
t+s

, s � 0. (5.24)

From the first-order conditions for capital and bonds we obtain

λt+s−1

λt+s
= 1+ (1− τk

t+s)r
k
t+s = 1+ r b

t+s , s > 0. (5.25)

Hence, the no-arbitrage condition between equity and bonds is

(1− τk
t+s)r

k
t+s = r b

t+s , s > 0. (5.26)

In other words, investment in equity takes place until the after-tax rate of return
on equity capital (1− τk

t+s)r
k
t+s equals the rate of return on government bonds

r b
t+s—in effect the cost of borrowing.
The Euler equation can be obtained from the first-order conditions for

consumption and capital as

βUc,t+1

Uc,t
(1+ τc

t )
(1+ τc

t+1)
[1+ (1− τk

t+1)r
k
t+1] = 1.

Hence, in the long run, either

β[1+ (1− τk)r k] = 1 (5.27)

or (1− τk)r k = r b = θ, the rate of time preference.
In contrast to lump-sum taxes, or just proportional taxes on output, these

proportional taxes affect the marginal relations from which the household’s
decisions for consumption, labor, and capital are derived, and hence are dis-
torting. Equation (5.24) shows that the consumption and labor income taxes
drive a wedge between the ratio of the marginal utilities and the real wage. If
we write the equation as

Uc,t
1+ τc

t
= Ul,t
(1− τw

t )wt
,

it is clear that a consumption tax causes households to reduce consumption.
A labor income tax causes households to require a higher wage to induce the
same supply of labor; if the wage is unchanged, then labor supply is reduced
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(leisure is increased). Equation (5.27) implies that a tax on capital raises the
rate of return on the marginal investment in capital. Since r k = Fk − δ and
Fkk < 0, it also implies a lower optimal level of capital and hence lower output
and consumption.

5.7.2.2 The Government’s Problem

We now consider the optimal choice of rates of taxation by the government.
We assume that this is constrained by the government’s wish to take into
account the optimality conditions of households. We can capture the constraint
imposed by households on government decisions through what is known as the
implementability condition. This is derived as follows.

Substituting the rates of return for capital and bonds into the household
budget constraint using equation (5.25) we obtain

(1+ τc
t+s)ct+s + kt+s+1 + bt+s+1 = (1− τw

t+s)wt+snt+s +
λt+s−1

λt+s
(kt+s + bt+s).

This can be solved forwards to give the intertemporal household budget
constraint

λt−1(kt + bt) =
∞∑
s=0

λt+s[(1+ τc
t+s)ct+s − (1− τw

t+s)wt+snt+s], (5.28)

provided the transversality conditions

lim
n→∞λt+nkt+n+1 = 0,

lim
n→∞λt+nbt+n+1 = 0

hold. Using the first-order conditions for consumption and work, equation
(5.28) can be rewritten as

λt−1(kt + bt) =
∞∑
s=0

βs(Uc,t+sct+s −Ul,t+snt+s). (5.29)

This equation is known as the implementability condition. We note that the
left-hand side is predetermined at time t.

The government budget constraint at time t is now

gt + (1+ r b
t )bt = τc

t ct + τw
t wtnt + τk

t r
k
t kt + bt+1. (5.30)

As we can derive the economy’s resource constraint from the household and
government budget constraints, the government’s problem can be expressed
as maximizing the intertemporal utility of households subject to the imple-
mentability condition (5.29) and the economy’s resource constraint, equa-
tion (5.23). We note that although the three tax rates appear in the govern-
ment budget constraint equation (5.30), they do not all appear in the resource
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constraint or in the Lagrangian, which can be written as

L =
∞∑
s=0

{βsU(ct+s , lt+s)+φt+s[r k
t+skt+s+wt+snt+s−ct+s−kt+s+1+kt+s−gt+s]}

+ µ
[ ∞∑
s=0

βs(Uc,t+sct+s −Ul,t+snt+s)− λt−1(kt + bt)
]
.

This problem can be expressed more compactly if we define

V(ct+s , lt+s , µ) = U(ct+s , lt+s)+ µ(Uc,t+sct+s −Ul,t+snt+s). (5.31)

The Lagrangian is then

L =
∞∑
s=0

{βsV(ct+s , lt+s , µ)
+φt+s[r k

t+skt+s +wt+snt+s − ct+s − kt+s+1 + kt+s − gt+s]}
− µλt−1(kt + bt).

(5.32)

The first-order conditions for consumption, labor, and capital are

∂L
∂ct+s

= βsVc,t+s −φt+s = 0, s � 0,

∂L
∂nt+s

= −βsVl,t+s +φt+swt+s = 0, s � 0,

∂L
∂kt+s

= φt+s(1+ r k
t+s)−φt+s−1 = 0, s > 0.

We now consider the implications of these conditions for the optimal choice of
the three tax rates.

5.7.2.3 Capital Taxation

We consider the implications for capital taxation both in the long run and the
short run. The Euler equation is now

βVc,t+1

Vc,t
(1+ r k

t+1) = 1.

Hence, the Euler equation implies that in the long run

β(1+ r k) = 1, (5.33)

which gives the familiar result that Fk − δ = r k = θ.
Equation (5.33) can be compared with equation (5.27), which says that β[1+

(1 − τk)r k] = 1. For simultaneous household and government optimization
both equations must hold. It therefore follows that the optimal rate of capital
taxation in the long run—the rate that is consistent with both equations—is
τk = 0. This result was first derived by Chamley (1986). The implication is that
a zero rate of capital taxation is optimal for all periods after period t.
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In period t, the first period, both capital kt and bonds bt are already given
and therefore cannot respond to their rate of taxation. We have assumed that
there is a zero tax on capital in period t. If the government were able to tax
capital in period t, then the last term in the Lagrangian, equation (5.32), would
be µλt−1(τk

t kt + bt). Maximizing with respect to τk
t gives

∂L
∂τk
t
= −µλt−1kt,

which, due to the use of distortionary taxation, is strictly positive if µ > 0.
Without distortionary taxation, µ = 0. This implies that the present-value

budget constraint does not affect household decisions. To avoid using distor-
tionary taxation—and hence allow all current and future proportional tax rates
to be set to zero—the government would need to be able to raise sufficient rev-
enues solely from taxing kt . It would then follow that µ = 0. This result is due
to kt and bt being given and is related to the well-known proposition that goods
and services in fixed supply yield only economic rents and, in the absence of
intertemporal considerations, the optimal rate of taxation of economic rents is
100%. (We note that an economic rent should not be confused with rents on
housing. An economic rent is the revenue arising from the vertical section of a
supply curve, where supply no longer responds to a higher price.)

If the private sector had worked out beforehand that capital would be taxed
at 100%, there would, of course, be no incentive to invest in new capital in the
first place. Such a policy would therefore only be effective if the government
could persuade the private sector that it does not intend to implement it. Once
it is implemented, the private sector would believe that it will always be imple-
mented, which would completely deter private capital accumulation. Hence, for
this policy of taxing initial capital to work, the private sector is required not to
learn from the past. Since this is not credible, we may conclude that the optimal
rate of capital taxation for all periods, including the first, is zero.

5.7.2.4 Consumption and Labor Taxation

From the first-order conditions and the marginal condition for labor,

Vl,t
Vc,t

= wt. (5.34)

We wish to know how the tax rates on consumption and labor can be cho-
sen so that both this equation and the equivalent equation for the house-
hold, equation (5.24), are satisfied. From equation (5.31) it can be shown that
equation (5.34) can be rewritten as

Vl,t
Vc,t

= (1+ µ)Ul,t + µ(Ucl,tct −Ull,tnt)
(1+ µ)Uc,t + µ(Ucc,tct −Ulc,tlt) = wt.

Hence, from equation (5.24),

Vl,t
Vc,t

= (1+ µ)Ul,t + µ(Ucl,tct −Ull,tlt)
(1+ µ)Uc,t + µ(Ucc,tct −Ulc,tlt) =

1+ τc
t

1− τ l
t

Ul,t
Uc,t

. (5.35)
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It can be shown that if the utility function is homothetic, i.e., if, for any θ,

Uc[θc, θl]
Ul[θc, θl]

= Uc(c, l)
Ul(c, l)

, (5.36)

then differentiating (5.36) with respect to θ and evaluating at θ = 1 gives

Ucc,tct −Ulc,tlt
Uc,t

= Ucl,tct −Ull,tlt
Ul,t

. (5.37)

Substituting (5.37) into (5.35) gives

Vl,t
Vc,t

= Ul,t
Uc,t

= 1+ τc
t

1− τw
t

Ul,t
Uc,t

.

The optimal rates of tax are therefore either τc
t = τw

t = 0 or τc
t = −τw

t .
The first solution arises from the fact that, as both taxes are distorting, it

is optimal to set them to zero. The second condition implies that it is optimal
to compensate for taxes on consumption (τc

t > 0) by subsidizing wages (τw
t =

−τc
t < 0). The household and government budget constraints then become

(1+ τc
t )(ct −wtnt)+ kt+1 + bt+1 = [1+ (1− τk

t )r
k
t ]kt + (1+ r b

t )bt,

gt + (1+ r b
t )bt = τc

t (ct −wtnt)+ τk
t r

k
t kt + bt+1.

Hence, government receives tax revenues (and households pay tax) only if con-
sumption exceeds wage income. Borrowing undertaken in order to spend more
than current wage income would therefore be taxed, but saving wage income
would be subsidized.

In practice, as the government must satisfy its budget constraint, it must col-
lect taxes. We have shown that lump-sum taxes, or proportional taxes on total
output, would not be distorting, but proportional taxes on consumption, wages,
or capital would be distorting. To be optimal, taxes should therefore be lump-
sum or on total output. Despite this result, most taxation is not lump-sum but
proportional. Moreover, tax rates commonly rise with income. This is called pro-
gressive taxation. The aim is to place more of the tax burden on higher-income
households and, by implication, redistribute income to low-income households.
As most capital income is received by higher-income households, a similar argu-
ment is used to justify taxing capital. In our analysis, progressive taxation is
not optimal because household utility functions are assumed to be indepen-
dent of each other. One way to justify progressive taxation formally would be
to assume instead that higher-income households are deriving satisfaction from
raising the utility—or consumption levels—of lower-income households. This
is the purpose of government transfers; they reflect the collective altruism of
people.

5.7.2.5 Tax Smoothing

We have argued that in the long run, considerations of fiscal sustainability deter-
mine that government expenditures must be paid for by taxes. We have exam-
ined which taxes to impose in the long run and, if we rule out initial capital
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taxation on credibility grounds, we have found that it is optimal for the govern-
ment to tax output and labor, with the government free to choose the balance
between the two. Although we have said that, in the short run, debt must then
be issued or retired in order that the government budget constraint is satisfied
each period, we have not determined what the optimal mix of tax revenues and
debt is each period. Should shocks be absorbed in the short run by varying
taxes or through debt? We draw on the analysis of Barro (1979) to answer this
question (see also Chari and Kehoe 1999).

There are clearly administrative costs to changing taxes frequently and it is
optimal for the government to minimize these. Assume that these costs are an
increasing (i.e., nonlinear) function of the level of total tax revenues so that

Φ(Tt) = φ1Tt + 1
2φ2T 2

t , Φ′(Tt) � 0

and assume that the government seeks to minimize
∑∞
s=0 βsΦ(Tt+s), the present

value of these costs, with respect to Tt and bt subject to its budget constraint

∆bt+1 = gt − Tt + r b
t bt, (5.38)

where gt and r b
t are taken as given.

The Lagrangian for this problem is

L =
∞∑
0

{βs[φ1Tt+s + 1
2φ2T 2

t+s]+ µt+s[gt+s − Tt+s − bt+s+1 + (1+ r b
t )bt+s]}.

The first-order conditions are

∂L
∂Tt+s

= βs[φ1 +φ2Tt+s]− µt+s = 0,

∂L
∂bt+s

= µt+s(1+ r b
t )− µt+s−1 = 0.

Hence

Tt+1 = φ1[1− (1+ r b
t )β]

φ2(1+ r b
t )β

+ 1

β(1+ r b
t )
Tt. (5.39)

If the government’s discount rate is the rate of time preference of households,
then β = 1/(1+ θ), and if the government chooses r b

t = θ, then β(1+ r b
t ) = 1,

and equation (5.39) becomes

Tt+1 = Tt.
In other words, it is optimal to keep Tt constant, and for debt to absorb any
shocks.

This analysis has assumed a deterministic world. Suppose instead that we
allow government expenditures to be a random variable, and assume that
government seeks to minimize Et[

∑∞
s=0 βsΦ(Tt+s)]. It can be shown that the

optimal tax rule becomes

Tt = EtTt+1.
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This implies that the aim is to set taxes today so that they are expected to stay
constant in the future. If expectations are rational, we can define the innovation
to taxes et+1 through

Tt+1 = EtTt+1 + et+1,
Etet+1 = 0.

Hence optimal tax revenues should follow the random walk (or, more strictly,
the martingale process):

∆Tt+1 = et+1.

We now consider the implications for debt. The GBC, equation (5.38), can be
written as

bt = Tt − gt
1+ θ + 1

1+ θEtbt+1

= Et
∞∑
s=0

(
Tt+s − gt+s
(1+ θ)s+1

)
.

If Tt = EtTt+1 then EtTt+s = Tt and debt is given by

bt = Ttθ − Et
∞∑
s=0

gt+s
(1+ θ)s+1

.

A Temporary Increase in Government Expenditures. Suppose that gt is subject
to temporary and unforecastable shocks in every period such that

gt = g + εt,
Etεt+1 = 0,

then

bt = Ttθ − Et
∞∑
s=0

gt+s
(1+ θ)s+1

= Tt
θ
− g
θ
− εt

1+ θ .
As bt is given, it follows that in period t

Tt = g + θbt + θ
1+ θεt.

Tt must therefore increase by (θ/(1+ θ))εt in order that the GBC is satisfied.
In period t + 1, noting that Etεt+1 = 0 and EtTt+1 = Tt , it follows that

bt+1 = Tt+1

θ
− g
θ
− εt+1

1+ θ
and so

Etbt+1 = EtTt+1

θ
− g
θ

= Tt
θ
− g
θ

= bt + εt
1+ θ ,
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b

T

t t + 1

1
1 + R

εt
R

1 + R
εt

Figure 5.3. The response of debt and taxes to a temporary shock.

implying that there is now an increase in debt. In subsequent periods,

Etbt+n = bt + εt
1+ θ for n > 0.

Thus, it is optimal to raise debt permanently by εt/(1 + θ). Future shocks
εt+1, εt+2, . . . will cause future debt to be further affected. But since the mean
shock is zero, the shocks will on average cancel each other out, and so the
average level of debt will be constant at the initial level bt .

To summarize, we have shown that although the plan is to smooth taxes so
that Tt = EtTt+1, this does not mean that Tt is unaffected by the shock εt . A
proportion θ/(1+ θ) of the shock is absorbed by Tt and the rest, 1/(1+ θ), is
absorbed by debt. Since θ is small, debt absorbs most of the shock. In figure 5.3
we depict the time paths of Tt and bt following a shock εt .

A Permanent Increase in Government Expenditures. We assume that govern-
ment expenditures increase by ∆g in period t and that this is expected to be
permanent. Suppose that in period t − 1

bt−1 = Tt−1

θ
− g
θ
.

In period t, when the permanent expenditure shock occurs,

bt = Tt − (g +∆g)
1+ θ + 1

1+ θEtbt+1.

Due to tax smoothing, Tt = EtTt+1 and so

Etbt+1 = EtTt+1

θ
− (g +∆g)

θ

= Tt
θ
− (g +∆g)

θ
= bt.

Hence, the GBC at time t can be written as

bt = Ttθ −
(g +∆g)

θ
.
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It follows that

Tt = Tt−1 +∆g
= EtTt+n, n � 0.

Consequently, a permanent increase of ∆g causes Tt and EtTt+n to be raised by
∆g, but bt and Etbt+n are unchanged. This shows that it is optimal to absorb a
permanent expenditure shock entirely by taxes.

If we reinterpret this result so that it applies to the business cycle by assuming
that fiscal shocks are serially correlated, then we reinforce conclusions obtained
previously about how to conduct fiscal policy. The implication of this result is
that over the business cycle fiscal deficits and surpluses should be financed
almost entirely by debt. The average level of debt, from one cycle to the next,
should therefore be approximately constant. This requires that increases in
debt during recessions, when a fiscal deficit occurs, should be redeemed dur-
ing the boom phase when the aim should be to generate fiscal surpluses. Con-
sequently, governments, observing a fiscal surplus, should not immediately
increase expenditures or cut taxes. In contrast, a permanent increase in gov-
ernment expenditures, expected to persist over more than one business cycle,
should be tax financed. This implies that permanent expenditures, health care
and education for example, should be tax financed, but temporary expenditures,
such as unemployment benefit, should be debt financed.

This prescription for healthy public finances has been interpreted by the U.K.
government as using debt finance over the business cycle so that at the end of
the cycle debt is restored to its previous level. This is not, however, what the
rule says; only if temporary expenditures are associated with the business cycle,
and most are, is such an interpretation valid. Emergency expenditures, due, for
example, to a natural disaster, are not associated with the business cycle, but
may be debt financed insofar as they are random events with a zero mean.

5.7.2.6 Simulation Evidence

Chari et al. (1994) have compared the welfare outcomes of alternative taxation
policies of capital and labor using simulation methods based on a DGE model.
They found that the greatest welfare benefits occurred for a high initial capital
tax and a negative initial labor tax. Thereafter, they found that capital taxes
should be close to zero and labor taxes should be positive, but not fluctuate
much. However, they also found that the benefits from having a zero capital
tax were small. This suggests that the temptation for government to tax capital
in later periods, despite the promise not to do so, is considerable. This tempta-
tion would be greatest following an unexpected increase in government expen-
ditures, or a shortfall in tax revenues. Giving in to such a temptation would, of
course, permanently destroy the credibility of the government’s promise not to
tax future returns to capital. Once the private sector believes that capital will
be taxed, there would be a substantial loss of welfare.
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In chapter 6, in our discussion of time-inconsistent economic policy, we take
up the issue of pursuing a different policy from that announced. And in chap-
ter 14 we comment on evidence about the effectiveness of fiscal policy, and
how this is influenced by the method of financing, based on a theoretical DGE
macroeconomic model.

5.8 Conclusions

What can we conclude from this analysis about how best to conduct fiscal
policy? The following is a list of our conclusions.

1. From an economic (as opposed to purely political) perspective, govern-
ment expenditures should be undertaken for three reasons: to provide
public, not private, goods; as automatic stabilizers; for (intergenerational)
equity of welfare.

2. Permanent increases in government expenditures should be financed by
higher taxes; temporary increases, possibly due to recession, should be
financed by debt, due to the desirability of smoothing taxes.

3. Lump-sum taxation is nondistorting, but proportional taxes on consump-
tion, labor, and capital are distorting. The justification for distorting taxes
derives from the need to finance expenditures and the wish to do so fairly.

4. It is optimal in the long run for capital taxes to be very low, or even zero.
The temptation to tax capital heavily in the short term should be avoided
as this would quickly undermine the government’s credibility and so prove
counterproductive.

5. The fiscal stance, and, in particular, a fiscal deficit, is sustainable if the
present value of current and expected future primary fiscal surpluses is
sufficient to meet current government debt liabilities.

6. The European Union’s Stability and Growth Pact appears to be neither
necessary nor sufficient to achieve a sustainable fiscal stance.

7. Optimal fiscal policy consists of first determining the optimal level of
government expenditures. Long-run taxation levels should be set to pay
for long-run government expenditures. In the short term, debt finance
should be used for temporary increases in the deficit. In the longer term,
debt should be used to achieve intergenerational equity; this is mainly
for capital projects. At all times the fiscal stance should be seen to be
sustainable.



�

�

“wickens” — 2007/10/15 — 13:08 — page 121 — #139
�

�

�

�

�

�

6
Fiscal Policy: Further Issues

6.1 Introduction

In this chapter we consider two further issues in fiscal policy: time inconsis-
tency and pensions policy. Governments sometimes announce a policy for the
future but find it optimal to carry out a different policy when the future arrives,
perhaps because the conditions are different from those that were expected to
prevail. This change of mind is called the problem of time inconsistency. A pol-
icy that it is not optimal to change in the future is called time consistent. The
mathematical appendix includes a discussion of the general problem of time
inconsistency. In this chapter the general theory is used to examine the circum-
stances under which time-consistent and time-inconsistent fiscal policies are
optimal.

Many problems in macroeconomics involve a period of time so long that con-
ventional dynamic analysis is no longer appropriate. An example is where the
time period is that of a generation, as opposed to conventional calendar time
such as a month or a year. A decision taken by one generation may affect
subsequent generations, but later generations would have had no say in the
decision. Many fiscal decisions are of this sort; for example, pensions and
some public investments. In order to analyze these issues we may need to use
the overlapping-generations (OLG) model. In this chapter, we discuss the OLG
model and then we illustrate its use by analyzing the issue of pensions. We
examine the relative merits of funded and unfunded pension schemes.

By way of a warning, the reader may find that some of the analysis of these
issues is technically more complex than most of the other material in this book.

6.2 Time-Consistent and Time-Inconsistent Fiscal Policy

According to Chari and Kehoe (2006), optimal policy in an intertemporal con-
text has three components: a model to predict how people will behave under
alternative policies; a welfare criterion to rank the outcomes of alternative poli-
cies; and a description of how policies will be set in the future. Such policies are
usually contingent on the conditions expected to prevail in the future. If these
conditions change, then it may be optimal to alter the policy, thereby making
the policy time inconsistent. This problem has its origins in the public-finance
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literature and, in particular, in Ramsey’s (1927) work on taxation. As a result,
a sequence of optimal policies over time is sometimes referred to as Ramsey
policies, and its associated outcomes as Ramsey outcomes (see also Chari et al.
1989).

We encountered the problem of the time inconsistency of fiscal policy in
our discussion of the optimal rate of capital taxation in chapter 5. A seminal
treatment of time-consistent and time-inconsistent fiscal policies is that of Fis-
cher (1980). We consider a slightly modified version of this that is designed
to illustrate many of the arguments about fiscal policy discussed previously,
as well as the differences between time-consistent and time-inconsistent fiscal
policies. We show the differences between nondistortionary and distortionary
taxation, between taxing labor and capital, and why a time-inconsistent policy
involving taxing capital, but not labor, may sometimes be better than a policy
of precommitment.

The problem Fischer considers is highly stylized through being simplified to
bring out the key features of time inconsistency. It is assumed that there are
two periods only. The intertemporal utility of the private sector is given by

Ut = U(ct, lt, gt)+ βU(ct+1, lt+1, gt+1),
U(ct, lt) = ln ct +α ln lt + γ lngt,

where ct is consumption, lt = 1 − nt is leisure, nt is employment, and gt is
government expenditure. To simplify the analysis, it is assumed that in the
first period there is no production because the private sector undertakes no
work, but lives off its endowment of capital kt , which it can either consume or
save. As a result, the budget constraint of the private sector in the first period
is

ct +∆kt+1 = rkt, (6.1)

where kt , the capital stock, is taken as predetermined with an implied rate of
depreciation of zero, and r is the rate of return on capital. Another simplifying
assumption is that the government makes no expenditures in period t. Hence
nt and gt are constrained to be zero in period t.

In the second period, the private sector works, producing an output of yt+1

using the linear production function

yt+1 = wnt+1 + rkt+1,

where w and r are the (constant) marginal products of labor and capital,
respectively. The government now spends gt+1. The resource constraint for
the economy in the second period is therefore

ct+1 + gt+1 = wnt+1 + rkt+1. (6.2)

The government satisfies its budget constraint by taxing the private sector
either through lump-sum taxes Tt+1, or through taxes on labor and capital.
The government’s budget constraint is therefore either gt+1 = Tt+1 or

gt+1 = τwwnt+1 + (R − Rτ)kt+1, (6.3)
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where τw is the proportional tax rate on wages andwτ = (1−τw)w is the after-
tax wage rate. If R = 1+ r is the gross return to capital and Rτ is the after-tax
gross return, then the tax rate of capital is R −Rτ . Capital taxes can consist of
taxing the rate of return to capital at the rate τr so that rτ = (1 − τk)r is the
after-tax rate of return, or of taxing the stock of capital at the rate τk when

R − Rτ = τk + τrr .

The private sector’s budget constraint in the second period is therefore either

ct+1 +∆kt+2 + Tt+1 = wnt+1 + rkt+1 (6.4)

or

ct+1 +∆kt+2 = wτnt+1 + Rτkt+1, (6.5)

where kt+2 = 0.
For each type of financing—lump-sum taxation and proportional tax rates—

we consider the central planning or command solution in which the government
chooses the optimal solutions for the economy as a whole. We then consider
the decentralized solution in which first the private sector makes its decisions
in the expectation of the government’s choice in period t + 1, and second the
government is free to reoptimize in the second period taking the private sector’s
first-period decisions and outcomes as given, including the assumption that the
private sector correctly anticipates period t+1 taxes and expenditures. Finally,
we allow both the private sector and the government to reoptimize in period
t + 1 taking the outcomes of period t as given. This is where the issue of time
consistency could arise.

6.2.1 Lump-Sum Taxation

6.2.1.1 The Central Planning Solution

The government’s problem is to maximize intertemporal utility Ut subject to
the economy’s intertemporal resource constraint, which is

(1+ r)ct + ct+1 + gt+1 = wnt+1 + (1+ r)2kt.

The Lagrangian is

L = ln ct +α ln lt + β(ln ct+1 +α ln lt+1 + γ lngt+1)

+ λ[wnt+1 + (1+ r)2kt − (1+ r)ct − ct+1 − gt+1].
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We note that lt = 1 − nt could be omitted as it is assumed that there is no
production in period t. The first-order conditions are

∂L
∂ct

= 1
ct
− λ(1+ r) = 0,

∂L
∂ct+1

= β 1
ct+1

− λ = 0,

∂L
∂nt+1

= −αβ 1
1−nt+1

+ λw = 0,

∂L
∂gt+1

= βγ 1
gt+1

− λ = 0,

implying that

ct = ((w − gt+1)/(1+ r))+ (1+ r)kt
1+ (1+α)β (6.6)

= (w/(1+ r))+ (1+ r)kt
1+ (1+α+ γ)β , (6.7)

ct+1 = β(1+ r)ct, (6.8)

lt+1 = α
w
ct+1, (6.9)

gt+1 = Tt+1 = γct+1, (6.10)

kt+1 = (1+ r)kt − ct. (6.11)

6.2.1.2 The Decentralized Solution

The Intertemporal Solution

(i) The private sector’s problem. In the first period the private sector maximizes
Ut subject to its intertemporal budget constraint, taking government expendi-
tures and lump-sum taxation as given. The intertemporal budget constraint can
be written as

(1+ r)ct + ct+1 + gt+1 = wnt+1 + (1+ r)2kt.
The Lagrangian is

L = ln ct +α ln lt + β(ln ct+1 +α ln lt+1 + γ lngt+1)

+ λ[wnt+1 + (1+ r)2kt − (1+ r)ct − ct+1 − gt+1]

and the first-order conditions are

∂L
∂ct

= 1
ct
− λ(1+ r) = 0,

∂L
∂ct+1

= β 1
ct+1

− λ = 0,

∂L
∂nt+1

= −αβ 1
1−nt+1

+ λw = 0,
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implying that

ct+1 = β(1+ r)ct, (6.12)

lt+1 = α
w
ct+1, (6.13)

ct = w − gt+1 + (1+ r)2kt
[1+ (1+α)β](1+ r) , (6.14)

kt+1 = (1+ r)kt − ct. (6.15)

This is exactly the same solution as under central planning.

(ii) The government’s problem. As the government takes the first-period out-
comes as given, its problem is to choose gt+1 to maximize utility in period t+1
subject to the economy’s resource constraint in period t + 1 and to the period
t outcomes. This implies taking account of equation (6.13) and taking ct and
kt+1 as given. The Lagrangian can be written as

L = ln ct+1 +α ln lt+1 + γ lngt+1

+ λ
[
lt+1 − αwct+1

]
+ µ[wnt+1 + (1+ r)kt+1 − ct+1 − gt+1].

The first-order conditions are

∂L
∂ct+1

= 1
ct+1

− λ α
w
= 0,

∂L
∂nt+1

= −α 1
1−nt+1

+ λw = 0,

∂L
∂gt+1

= γ 1
gt+1

− µ = 0.

Hence,

gt+1 = γct+1.

Again this is the same as for the centrally planned economy.
We now consider whether there are any benefits to reoptimization by the

government in period t + 1.

Reoptimization in Period t + 1

(i) The private sector’s problem. If the private sector reoptimizes in period
t + 1 taking kt+1, the outcome from period t, as given, then it maximizes
U(ct+1, lt+1, gt+1) subject to the resource constraint in period t + 1 (equa-
tion (6.4)). The Lagrangian is

L = ln ct+1 +α ln lt+1 + γ lngt+1 + λ[wnt+1 + (1+ r)kt+1 − ct+1 − gt+1].
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The first-order conditions are

∂L
∂ct+1

= 1
ct+1

− λ = 0,

∂L
∂nt+1

= −α 1
1−nt+1

+ λw = 0,

∂L
∂gt+1

= γ 1
gt+1

− λ = 0.

These give the same solutions as before.

(ii) The government’s problem. The problem facing the government in the
second period is therefore also the same. Consequently, there is no time
inconsistency for policy using lump-sum taxes.

Taken together with the private sector’s decisions, we conclude that in a
decentralized economy reoptimization by the government in period t + 1 sim-
ply duplicates both the centrally planned solution and the optimal policy. Policy
under lump-sum taxes is therefore time consistent.

6.2.2 Taxes on Labor and Capital

6.2.2.1 The Central Planning Solution

The government maximizes intertemporal utility Ut subject to the economy’s
intertemporal resource constraint and the government budget constraint in
period t + 1. The Lagrangian is

L = ln ct +α ln lt + β(ln ct+1 +α ln lt+1 + γ lngt+1)

+ λ[wnt+1 + R2kt − Rct − ct+1 − gt+1]

+ µ[τwwnt+1 + (R − Rτ)(Rkt − ct)− gt+1].

The first-order conditions are

∂L
∂ct

= 1
ct
− λ(1+ r)− µ(R − Rτ) = 0,

∂L
∂ct+1

= β 1
ct+1

− λ = 0,

∂L
∂nt+1

= −αβ 1
1−nt+1

+ λw + µτww = 0,

∂L
∂gt+1

= βγ 1
gt+1

− λ− µ = 0,

∂L
∂τw

= µwnt+1 = 0,

∂L
∂Rτ

= −µ(Rkt − ct) = 0.
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It follows that µ = 0 and hence

ct+1 = βRct = β(1+ r)ct, (6.16)

lt+1 = α
w
ct+1, (6.17)

gt+1 = γct+1. (6.18)

These are the same as for lump-sum taxation, namely, equations (6.8)–(6.10).
As the budget constraint is different, however, there is a different solution for
ct . This is

ct = (w/R)+ Rkt
1+ β(1+α+ γ). (6.19)

6.2.2.2 Decentralized Solution

Intertemporal Solution

(i) The private sector’s problem. In the first period the private sector maxi-
mizes Ut subject to its intertemporal budget constraint taking government
expenditures and the taxes on labor and capital as given. The private sector’s
intertemporal budget constraint is

Rτct + ct+1 = wτnt+1 + RRτkt.
The Lagrangian is

L = ln ct +α ln lt + β(ln ct+1 +α ln lt+1 + γ lngt+1)

+ λ[wτnt+1 + RRτkt − Rτct − ct+1].

The first-order conditions are

∂L
∂ct

= 1
ct
− λRτ = 0,

∂L
∂ct+1

= β 1
ct+1

− λ = 0,

∂L
∂nt+1

= −αβ 1
1−nt+1

+ λwτ = 0,

implying that

ct = (w
τ/Rτ)+ Rkt
(1+α)β , (6.20)

ct+1 = βRτct, (6.21)

lt+1 = α
wτ
ct+1, (6.22)

kt+1 = (1+ r)kt − ct. (6.23)

Comparing the solution involving lump-sum taxes with this solution, w is
replaced by wτ and R is replaced by Rτ , i.e., the after-tax wage rate and the
after-tax return to capital are now used. This implies that this type of taxation
of labor and capital is distorting.
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(ii) The government’s problem. The government takes the first-period outcomes
as given. Its problem is to choose gt+1 and labor and capital taxes to maximize
utility in period t+1 subject to the economy’s resource constraint in period t+1,
and to the period t outcomes. This implies taking account of equation (6.13)
and taking ct and kt+1 as given. The Lagrangian can be written as

L = ln ct+1 +α ln lt+1 + γ lngt+1 + λ
[
lt+1 − α

wτ
ct+1

]

+ µ[βRτct − ct+1]+φ[τwwnt+1 + (R − Rτ)kt+1 − gt+1].

The first-order conditions are

∂L
∂ct+1

= 1
ct+1

− λ α
wτ

− µ = 0,

∂L
∂nt+1

= −α 1
1−nt+1

− λ+φτww = 0,

∂L
∂gt+1

= γ 1
gt+1

−φ = 0,

∂L
∂τw

= −λ αw
(wτ)2

ct+1 +φwnt+1 = 0,

∂L
∂Rτ

= µβct −φkt+1 = 0.

These equations can be solved for the optimal taxes, but the solution is com-
plex and highly nonlinear. With taxes on labor and capital, the solution in a
decentralized economy is therefore different from that in a centrally planned
economy.

Reoptimization in Period t + 1

(i) The private sector’s problem. The private sector now reoptimizes in period
t+1 taking kt+1, gt+1, and the tax rates as given. It maximizesU(ct+1, lt+1, gt+1)
subject to its budget constraint in period t+ 1 (equation (6.5)). The Lagrangian
is

L = ln ct+1 +α ln lt+1 + γ lngt+1 + λ(wτnt+1 + Rτkt+1 − ct+1).

The first-order conditions are

∂L
∂ct+1

= 1
ct+1

− λ = 0,

∂L
∂nt+1

= −α 1
1−nt+1

+ λwτ = 0.

Hence, we obtain

ct+1 = w
τ + Rτkt+1

1+α , (6.24)

lt+1 = α
wτ
ct+1. (6.25)
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(ii) The government’s problem. The government maximizes U(ct+1, lt+1, gt+1)
subject to its budget constraint in period t + 1 (equation (6.3)) and to equa-
tions (6.24) and (6.25). The Lagrangian is

L = ln ct+1 +α ln lt+1 + γ lngt+1 + λ
(
lt+1 − α

wτ
ct+1

)

+ µ
(
ct+1 − w

τ + Rτkt+1

1+α
)
+φ(τwwnt+1 + (R − Rτ)kt+1 − gt+1).

The first-order conditions are

∂L
∂ct+1

= 1
ct+1

− α
wτ
λ+ µ = 0,

∂L
∂nt+1

= −α 1
1−nt+1

− λ+φτww = 0,

∂L
∂gt+1

= γ 1
gt+1

−φ = 0,

∂L
∂τw

= −λ αw
(wτ)2

ct+1 + µ w
1+α +φwnt+1 = 0,

∂L
∂Rτ

= −µ kt+1

1+α −φkt+1 = 0.

It can be shown that these imply that lt+1 = (α/w)ct+1. This is different from
the constraint lt+1 = (α/wτ)ct+1 unless τw = 0. It follows, therefore, that the
optimal value of the labor tax rate is zero. Thus, despite the private sector’s
expectation that wages will be taxed in period t + 1, when period t + 1 arrives
it is optimal not to do so, but to encourage employment and output.

The optimal rate of taxation of capital must satisfy the government’s budget
constraint. As the optimal level of government expenditure is given by

gt+1 = γct+1,

which is the same as for lump-sum taxes, the optimal after-tax gross rate of
return to capital is

Rτ = (1+α)R − (γw/kt+1)
1+α+ γ , (6.26)

implying that the rate of taxation of capital is

R − Rτ = γ(R − (w/kt+1))
1+α+ γ .

Recalling that R−Rτ = τk+τrr , this can be raised from taxing either the stock
of capital or the rate of return to capital, or, if necessary in order to satisfy the
government budget constraint, both.

With these taxes the solution for ct+1 becomes

ct+1 = w + Rkt+1

1+α+ γ .

It can be shown that the solution for ct is equation (6.19), the centrally planned
solution.
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We conclude that in a decentralized economy with labor and capital taxes,
reoptimization by the government in period t+1 results in a time-inconsistent
solution as it produces a different outcome from the intertemporal solution
without reoptimization. However, the reoptimized time-inconsistent solution
is the same as the solution under central planning. The reason for this is that
taxing capital differently in period t+1 from what was expected by the private
sector in period t is equivalent to using lump-sum taxes in period t + 1.

6.2.2.3 A Time-Consistent Solution

It is possible to derive an optimal solution for the decentralized economy in the
presence of distortionary taxation that the government would not want to devi-
ate from in period t+1. This is called the time-consistent solution. It is obtained
using the “principle of optimality” of dynamic programming. Dynamic program-
ming reverses the order in which the full solution for the two periods is derived.
First, in period t+1 both the private sector and the government optimize, tak-
ing kt+1 as given. This is the same solution that was derived above and is based
on reoptimization in period t + 1. Taking this solution as given (i.e., given the
values for τw, Rτ , and gt+1), the private sector optimizes intertemporal utility
over the two periods, by choosing kt+1. We then have the full solution.

The intertemporal utility function to be maximized in period t is now

U∗ = ln ct +α ln lt + β(ln ct+1 +α ln lt+1 + γ lngt+1),

where ct+1, lt+1, and gt+1 are the optimal solutions derived for period t + 1.
Once more, lt could be omitted as it is assumed that there is no production in
period t. The private sector maximizesU∗ subject to equations (6.24) and (6.25)
and to the first-period budget constraint, equation (6.1), taking τw, Rτ , and
gt+1 as given. Instead of using Lagrangian multipliers, we substitute the three
constraints into U∗ to obtain

U∗ = ln(Rkt − kt+1)+α ln lt

+ β(1+α)[ln(wτ + Rτkt+1)− ln(1+α)]+α ln
α
wτ

+ γ lngt+1.

The only decision left is the choice of kt+1. The first-order condition is

∂U∗

∂kt+1
= − 1

Rkt − kt+1
+ β(1+α)Rτ
wτ + Rτkt+1

= 0.

Consequently,

kt+1 = (1+α)βRkt − (w
τ/Rτ)

1+ (1+α)β , (6.27)

and so

ct = Rkt + (w
τ/Rτ)

1+ (1+α)β . (6.28)

In order to obtain the time-consistent optimal capital tax Rτ , we must combine
equations (6.27) and (6.26) to eliminate kt+1. The result is the solution to the
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following quadratic equation in Rτ :

(Rτ)2(1+α+ γ)βRkt − Rτ[w(1− βγ)+ R2(1+α)βkt]+wR = 0.

The assumption in the time-consistent solution when optimizing in period t is
that the private sector takes the government decisions in period t+1 concerning
τw, Rτ , and gt+1 as given, and the government takes the decisions of the private
sector for period t+1 as given when optimizing in period t+1. This results in a
welfare loss compared with a cooperative solution—were cooperation possible.
The optimal level of the capital tax Rτ depends on how the private sector acts
in the first period: if the private sector cooperates, then the tax would be low,
which would encourage capital accumulation; but if the private sector does not
act cooperatively, then capital taxes would be high.

A ranking can be given to these various policy scenarios concerning labor and
capital taxes. The first-best welfare outcome is the centrally planned solution;
the time-inconsistent solution is second; the intertemporal solution, in which
the government takes account of the constraints on its decisions following the
private sector’s intertemporal optimization, is third; and the time-consistent
solution is last.

6.2.3 Conclusions

We have shown how policymaking over more than one period may lead to a
desire by government to change its original plan. Moreover, this may be opti-
mal for the economy as a whole. The analysis is complicated. Consequently,
there are few examples of the problem in the literature, and Fischer’s paper has
become a key reference, even though the model is highly stylized. Nonetheless,
the results are very sensitive to the outcomes for the different types of policy
scenarios. A key assumption was that the policy problem was for two periods.
In practice, it will be a repeated problem involving many periods. If it is best
for the government to reoptimize each period, then only the first period of the
plan will ever be carried out, however many periods each plan is for. The private
sector, realizing this, will act accordingly in making their own decisions, and
ignore any statement from the government that refers to periods beyond the
current period. Consequently, the multiperiod problem is effectively reduced
to a series of one-period problems.

6.3 The Overlapping-Generations Model

6.3.1 Introduction

The models considered so far are all representative-agent models, in which all
households and firms are assumed to be identical. Moreover, the representative
agent is assumed to live forever. Even the Blanchard–Yaari model, where there
is a constant, finite, nonzero probability of dying in each period, was shown
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in chapter 4 to reduce to an infinite-life model with a redefined discount rate.
The infinite-life representative-agent model is convenient when analyzing most
problems. It does, however, have some strong implications for the behavior of
the economy that may not always be appropriate. It removes most of the effects
of ageing, particularly as they relate to intergenerational effects. For example,
it eliminates the possibility of intergenerational transfers. This is particularly
relevant for the analysis of pensions, a major reason for household saving. It
also affects some of our earlier conclusions about fiscal policy.

In practice, the obligations of governments tend to be indefinite, whereas
those of people are limited to their lifetimes. The probability that a government
assumes that its actions would result in it having a finite time in office seems to
be negligible and may for most practical purposes be ignored. Suppose, how-
ever, that today’s old generation voted themselves lower taxes, higher benefits,
or larger expenditures, and financed this by borrowing from today’s young gen-
eration. Since the old generation would not be alive to redeem the debt, the bur-
den of doing this would fall on tomorrow’s old generation (today’s young gen-
eration). Today’s old generation has therefore benefited at the expense of the
current young generation. This could, of course, be repeated with next period’s
old generation (today’s young generation) redeeming the debt by borrowing
from the following period’s young generation.

In order to analyze the issues arising from this we switch from the represen-
tative-agent model to the overlapping-generations (OLG) model. We begin our
study of the OLG model by considering it solely as an alternative representa-
tion of the intertemporal macroeconomic model used previously. Our discus-
sion of the OLG model is developed from Diamond (1965) (which adds a sup-
ply side to Samuelson’s (1958) original pure-exchange OLG model), Blanchard
and Fischer (1989), Barro and Sala-i-Martin (2004), and Michel and de la Croix
(2002). We then apply the OLG model to analyze different ways of financing
pensions. Finally, we consider how the OLG model affects some of our previous
conclusions about fiscal policy.

6.3.2 The Basic Overlapping-Generations Model

For simplicity and transparency, our basic OLG model is also highly stylized.
The key assumption is that each person’s life has two time periods: youth and
old age. Hence in every time period there are two types of people: the young
and the old. Both make intertemporal decisions: the young for two periods and
the old for one period. Clearly, a time period in the OLG model is different from
before, being a matter of a generation rather than months.

It is assumed that only the young work; the old are retired. If the total pop-
ulation is Nt , then in time t there are N1t young people and N2t old people.
Hence,

Nt = N1t +N2t.
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This period’s old are last period’s young and so

N2t = N1,t−1.

Thus

Nt = N1t +N1,t−1.

We assume that the population grows at the fixed rate n. Hence

N1,t = (1+n)N1,t−1 (6.29)

and

Nt = N1,t + 1
1+nN1,t .

If c1t and c2t are the respective consumptions per head of the young and the
old, then total consumption by the young and old in period t is

Cit = citNit, i = 1,2.

The current generation of young consume c2,t+1 per capita in period t+1 when
they become old. Total consumption at time t is

Ct = C1t + C2t

=
(
c1t + 1

1+nc2t

)
N1t.

The national income identity is

Yt = Ct + It,
where It is investment. The capital accumulation condition is

∆Kt+1 = It − δKt,
where the rate of depreciation will be much closer to unity than in the previ-
ous representative-agent model. The resource constraint for the economy can
therefore be written as

Yt =
(
c1t + 1

1+nc2t

)
N1t +Kt+1 − (1− δ)Kt. (6.30)

The resource constraint expressed in per capita terms is

yt = N1t

Nt

(
c1t + 1

1+nc2t

)
+ N1t

Nt
N1,t+1

N1t

Kt+1

N1,t+1
− (1− δ)N1t

Nt
Kt
N1t

= 1
1+ (1/n)

[
c1t + 1

1+nc2t + (1+n)kt+1 − (1− δ)kt
]
,

where kt = Kt/N1t .
Only the young work. We assume that the production function is

Yt = F(Kt,N1t)
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and has constant returns to scale. Thus output per head is

yt = YtNt =
N1t

Nt
F
(
Kt
N1t

,1
)

= 1
1+ (1/n)f(kt),

where kt = Kt/N1t . The resource constraint per capita is therefore

f(kt) = c1t + 1
1+nc2t + (1+n)kt+1 − (1− δ)kt. (6.31)

Profit maximization implies that rt , the rate of return to capital, equals the net
marginal product of capital,

f ′(kt)− δ = rt, (6.32)

and that the young are paid their marginal product. Given the assumption of
constant returns, their wage rate (also the income per young person) is

wt = f(kt)− ktf ′(kt). (6.33)

The young generation consumes c1t and saves

s1t = wt − c1t. (6.34)

Due to investing savings, they generate an income when old of (1+rt+1)s1t . As
the old generation consumes the whole of their income and saves nothing, the
intertemporal budget constraint is

c2,t+1 = (1+ rt+1)(wt − c1t). (6.35)

We note that this can also be written in the more familiar form of the two-period
intertemporal budget constraint:

c1t + c2,t+1

1+ rt+1
= wt.

From the resource constraint for the total economy at time t, net investment
is

∆Kt+1 = Yt − c1tN1t − c2tN1,t−1 − δKt
= wtN1t + rtKt − c1tN1t − c2tN1,t−1.

Using c1t = wt + st and c2t = (1+ rt)st−1 we obtain

Kt+1 − stN1t = (1+ rt)(Kt − st−1N1,t−1).

This unstable difference equation is satisfied for all t only by the degenerate
solution

Kt+1 = stN1t. (6.36)

In other words, the total demand for capital must equal the total supply of
savings. Saving is undertaken only by the young, who own next period’s capital
stock. If we assume that they do not want to be left with any assets when they
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die, then, in the following period, when they are old, they sell this capital to the
new young generation. Equation (6.36) can be written in per capita terms as

st = Kt+1

N1t
= (1+n)kt+1. (6.37)

Accordingly, consumption when old can be related to next period’s capital stock
through

c2,t+1 = (1+ rt+1)(1+n)kt+1. (6.38)

The two generations are assumed to be identical in their preferences. The
difference lies in how many years of life they have left. Hence consumption
decisions depend on the age of the individual. The young live for two periods,
and so in period t their utility function is

U = U(c1t)+ βU(c2,t+1).

Taking wt and rt+1 as given, the young maximize U subject to their intertem-
poral constraint. The Lagrangian for this problem is

L = U(c1t)+ βU(c2,t+1)+ λ[c2,t+1 − (1+ rt+1)(wt − c1t)].

The first-order conditions are

∂L
∂c1t

= Uc1,t + λ(1+ rt+1) = 0, (6.39)

∂L
∂c2,t+1

= βUc2,t+1 + λ = 0. (6.40)

Hence
βUc2,t+1(1+ rt+1)

Uc1,t

= 1. (6.41)

This is the OLG equivalent of the Euler equation in the basic representative-
agent model and it relates consumption next period to consumption this period.
Writing β = 1/(1+ θ), where θ is the discount rate, we obtain

Uc2,t+1

Uc1,t

= 1+ θ
1+ rt+1

.

If, for example, we have power utility so that

U(cit) = c
1−σ
it − 1

1− σ , i = 1,2,

then Ucit = c−σit and

c2,t+1 =
(

1+ rt+1

1+ θ
)1/σ

c1t. (6.42)

Assuming that U ′′ < 0 we find that c1t � c2,t+1 as rt+1 � θ. Consumption when
young exceeds consumption when old if the real return to saving is less than the
rate of time discount, i.e., if the incentive to save for the future is insufficient
to offset the discounting of future utility.
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6.3.3 Short-Run Dynamics and Long-Run Equilibrium

The dynamic behavior of the economy and its steady-state solution may be
derived from equations (6.33), (6.34), (6.38), and (6.42). Eliminating c1t from
equation (6.34) using equation (6.42) gives

st = wt −
(

1+ rt+1

1+ θ
)−1/σ

c2,t+1.

Substituting for st into equation (6.35) and simplifying gives[
1+ (1+ rt+1)1−1/σ

(1+ θ)−1/σ

]
c2,t+1 = (1+ rt+1)wt.

Substituting c2,t+1 into equation (6.38) and recalling the solution for wages
(equation (6.33)) gives the following nonlinear difference equation in kt :

kt+1 = (f (kt)− f ′(kt)kt)
/(
(1+n)

[
1+ (1+ rt+1)1−1/σ

(1+ θ)−1/σ

])
, (6.43)

where rt+1 = f ′(kt)− δ is also a function of kt .
A general closed-form solution for kt is not available, due to the nonlinearity

of this equation of motion. We therefore consider a specific solution. A par-
ticularly convenient assumption is that the utility function is logarithmic. This
implies thatσ = 1, which eliminates rt+1 from equation (6.43). We also assume a
Cobb–Douglas production function where f(kt) = kαt , giving f ′(kt) = αk−(1−α)t .
As a result, equation (6.43) can be written as

kt+1 = 1
(1+n)(2+ θ)[f(kt)− f

′(kt)kt]

= φkαt , (6.44)

where φ = (1−α)/((1+n)(2+ θ)).
The condition for the existence and the stability of long-run equilibrium is

that

−1 <
dkt+1

dkt
< 1,

and, from equation (6.44),

dkt+1

dkt
= αφk−(1−α)t .

The dynamic behavior of capital can be analyzed algebraically or graphically.
First we examine local stability. Assuming that there is a long-run solution, this
is given by

k∗ =
[

1−α
(1+n)(2+ θ)

]1/(1−α)
.

Using a Taylor series expansion about k∗ of the right-hand side of equation
(6.44), we obtain

∆kt+1 = −(1−α)(kt − k∗),
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kt + 1
kt + 1 = kt

ktk*

A

B
kt

αφ

Figure 6.1. The adjustment path of capital.

which is a partial adjustment model. We note that dkt+1/dkt = α < 1. Hence
equation (6.43) is locally stable.

Alternatively, we may use figure 6.1. The curve is equation (6.43). Along the
45◦ line kt+1 = kt . The intersection of the lines gives k∗ at point B. At B the slope
of the curve is less than that of the 45◦ line, hence 0 < dkt+1/dkt < 1, and so
the long-run solution is globally stable. Figure 6.1 also depicts the adjustment
path from A to B following a permanent shift upwards in the curve, which, we
note, raises the equilibrium value of capital.

From equation (6.34), and noting that c∗2 = ((1 + r∗)/(1 + θ))c∗1 , it can be
shown that

c∗1 =
1+ θ
2+ θw

∗,

s∗ = 1
2+ θw

∗,

c∗2 = (1+ r∗)s∗

= 1+ r∗
2+ θ w

∗,

where an asterisk denotes the long-run equilibrium value. Hence

c∗2 − c∗1 =
r∗ − θ
2+ θ w

∗.

Since we expect r∗ � θ, we have c∗2 � c∗1 .
In the more general solution that does not assume logarithmic utility, the

more σ exceeds unity, the smaller k∗ is for rt+1 > θ. Also, the greater n is, the
smaller k∗ is. Although we have introduced n as the rate of population growth
of the young, we could give it another interpretation. It could be regarded as the
rate of growth of the productivity of labor, possibly through improved know-
ledge. N1 would then be interpreted as effective labor, and consumption and
capital would be measured per effective unit of labor.

6.3.4 Comparison with the Representative-Agent Model

In the static-equilibrium representative-agent model consumption is the same
for everyone. A question of interest is whether this level of consumption is
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more or less than the young and old generations of the OLG model. In the
OLG model, the income of the old is due to saving when young, whereas in the
representative-agent model, people receive wage income throughout their lives.
The intertemporal model aims to smooth consumption by saving today to offset
reductions in future income. This suggests that households in the OLG model
will save far more than those in the representative-agent model. Consequently,
we would expect the capital stock in the OLG model to be greater. Given the
same capital stock, and the opportunity to save a lower proportion of income,
we would expect consumption in the representative-agent model to be greater
than that of the young generation in the OLG model. A larger capital stock in
the OLG model could reverse this.

In making a more formal comparison, we assume that n = 0 in the OLG
model and that the production function in the representative-agent model is
f(k) = kα. We assume logarithmic utility in both. The optimal solution in the
representative-agent model is

k# =
(
α

δ+ θ
)1/(1−α)

,

w# = (1−α)k#α,

c# = w#.

In the OLG model with n = 0 it is

k∗ =
[

1−α
2+ θ

]1/(1−α)
,

w∗ = (1−α)k∗α,

c∗1 =
1+ θ
2+ θw

∗,

c∗2 =
1+ r∗
2+ θ w

∗.

It can be shown that k# � k∗ and w# � w∗ as

δ � α(2+ θ)
1−α − θ.

In general, it is not clear what the sign will be. However, if α = 0.25 then δ �
2
3(1 − θ). It is probable, therefore, that k# < k∗ and w# < w∗. If capital fully
depreciates during a generation so that δ = 1, then k# < k∗. This would accord
with our intuition. Even then, however, it is still not possible to determine the
relative sizes of c# and c∗1 .

6.3.5 Fiscal Policy in the OLG Model: Pensions

The OLG model is particularly suitable for analyzing fiscal policy issues involv-
ing a different treatment of young and old. Examples are the provision of funded
and unfunded pensions, welfare benefits to the young such as unemployment
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benefit or state aid for education, and government investment projects that
mainly benefit future generations. We begin by considering a generic problem
in which the government taxes the young and old differently through lump-sum
taxes. We allow the taxes to be negative so that they may also be a benefit. We
also permit the government to issue 1-period bonds to cover any deficit. These
are purchased only by the young.

The principal reason for saving is to provide a pension in retirement. A fully
funded pension is one in which the whole pension is due to past savings. In
many countries pensions are paid for out of current taxation and not savings.
This is called an unfunded pension, or a pay-as-you-go (PAYG) system. Longer
lifetimes and lower population growth are currently causes of considerable con-
cern because unfunded pensions then impose a growing tax burden. The OLG
model is particularly suited to an analysis of pensions, funded or unfunded.

6.3.5.1 Fully Funded Pensions

If fully funded pensions are provided for from personal savings, then there is no
need to bring government into the analysis. The income of the old generation in
the previous analysis of the OLG model is, in effect, a pension generated from
savings. The situation changes if there is, in addition, a state pension. If the
state pension is fully funded, then the government taxes the young generation,
invests this contribution and pays out the proceeds to the young generation
when they are old. The government seems, therefore, to be forcing the young
to save more than they would choose to on their own. We examine this case in
greater detail.

Suppose that the government imposes a tax of τt on each member of the
young generation which it then invests. The proceeds from the investment are
returned to them when they are old in the form of a pension pt+1. For this fully
funded scheme,

pt+1 = (1+ rt+1)τt.

Hence, in a stochastic economy, pt+1 is not known with certainty.
The budget constraint for the young generation is

s1t = wt − c1t − τt
and their consumption when old is

c2,t+1 = (1+ rt+1)st + pt+1

= (1+ rt+1)(st + τt).

The intertemporal budget constraint therefore remains

c2,t+1 = (1+ rt+1)(wt − c1t) (6.45)

and the Euler equation (2.12) is also the same.
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The resource constraint for the total economy at time t is now

∆Kt+1 = wtN1t + rtKt − c1tN1t − c2tN1,t−1

= wtN1t + rtKt − (wt − st − τt)N1t − (1+ rt)(st−1 + τt−1)N1,t−1.

Hence,

Kt+1 − (st − τt)N1t = (1+ rt)[Kt − (st−1 + τt−1)N1,t−1],

which has the per capita solution

st + τt = (1+n)kt+1. (6.46)

In effect, therefore, st has been replaced by st + τt .
Recalling that τt is determined exogenously by the government, provided

τt < (1+n)kt+1, i.e., it does not exceed total savings when there is no govern-
ment intervention, the desired capital stock, and hence total savings, are there-
fore the same as when there is no fully funded government pension. In this
case, there would be little point in having a state pension. Individuals would
simply make an equal cut in their voluntary savings one-for-one to offset the
state pension and so when old finish up with the same income as before.

6.3.5.2 Unfunded Pensions

Under a PAYG system, pensions to the old generation are paid from current
tax receipts. Assuming a poll tax on both generations, the government budget
constraint for time t can be written as

τt(N1t +N2t) = ptN2t.

Recalling that N2t = N1,t−1 = N1t/(1+n), the pension after tax is

pt − τt = (1+n)τt.
Consumption when old is now

c2,t+1 = (1+ rt+1)st + (pt+1 − τt+1)

= (1+ rt+1)st + (1+n)τt+1. (6.47)

Thus the rate of return to private savings is rt+1, but the effective rate of
return on the enforced pension contributions is n. The intertemporal budget
constraint becomes

c2,t+1 = (1+ rt+1)(wt − c1t − τt)+ (1+n)τt+1, (6.48)

which is different from (6.45).
The resource constraint for the total economy at time t is now

∆Kt+1 = wtN1t + rtKt − c1tN1t − c2tN1,t−1

= wtN1t + rtKt − (wt − st − τt)N1t − [(1+ rt)st−1 + (1+n)τt−1]N1,t−1.
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Hence,

Kt+1 − (st + τt)N1t = (1+ rt)[Kt − (st−1 + τt−1)N1,t−1]− (n− rt)τt−1N1,t−1

or

(1+n)kt+1 − (st + τt) = 1+ rt
1+n [(1+n)kt − (st−1 + τt−1)]− n− rt

1+n τt−1.

The solution to this difference equation depends on whether rt is greater than
or less thann. The steady-state solution for given constant taxes τt and interest
rates rt is

st = (1+n)kt+1,

which is the same relation as for the economy without state pensions. This does
not imply, however, that savings or the capital stock are at the same level.

The problem for the young is to maximize U subject to this intertemporal
budget constraint for given wages, interest rates, and taxes. The Lagrangian is

N = U(c1t)+ βU(c2,t+1)+ λ[c2,t+1 − (1+ rt+1)(wt − c1t − τt)− (1+n)τt+1].

The first-order conditions for consumption and the resulting Euler equation
have the same form as those without pensions, namely, equations (6.39), (6.40),
and (2.12). Assuming power utility, we obtain

c2,t+1 = (1+ rt+1)(wt − c1t − τt)+ (1+n)τt+1

= (1+ rt+1)
[
wt −

(
1+ rt+1

1+ θ
)−1/σ

c2,t+1 − τt
]
+ (1+n)τt+1.

Hence for σ = 1 and constant taxes,

c2,t+1 = 1+ rt+1

2+ θ wt + n− rt+1

2+ θ τt. (6.49)

From equation (6.47), st = (1+n)kt+1, and assuming that f(kt) = kαt , we obtain
wt = (1−α)kαt and rt+1 = αk−(1−α)t − δ. The left-hand and right-hand sides of
equation (6.49) can therefore be written as

(1− δ+αk−(1−α)t )(1+n)kt+1 = 1− δ+αk−(1−α)t
2+ θ (1−α)kαt +

n− rt+1

2+ θ τt ;

hence

kt+1 = 1−α
(2+ θ)(1+n)k

α
t +

n− rt+1

(2+ θ)(1+n)(1+ rt+1)
τt

= φkαt + λtτt,
where λt � 0 as n � rt+1. This equation is represented in figure 6.2.

If n > rt+1, then λ > 0, and an increase in the unfunded state pension
increases taxes and shifts the curve upwards. This results in a higher equi-
librium capital stock and hence savings. Clearly, the old generation benefits, as
will all future old generations. Given c1t = ((1 + θ)/(1 + rt+1))c2,t+1, in gen-
eral equilibrium, in which the interest rate also changes, a higher capital stock
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kt + 1

kt + 1 = kt

kt

kt
αφ  +   t   t λ τ

Figure 6.2. The effect on capital of an increase in taxes.

reduces rt+1. Consequently, the young generation also benefits. But if n < rt+1,
then λ < 0, and an increase in the unfunded state pension shifts the curve down-
ward. This results in a lower equilibrium capital stock and lower savings. In this
case, only the current old generation benefits, not future old generations—in
particular, the current young generation does not benefit.

We conclude, therefore, that an unfunded pension scheme with a static
or slowly growing population is likely to reduce economic welfare in the
longer term. For such a population a fully funded scheme is clearly preferable.
Unfunded schemes are feasible only for fast-growing populations.

6.3.5.3 Fiscal Policy with Debt

The government pension policies considered so far involve a balanced budget as
pension payments to the old generation are paid for in each period by pension
contributions from the young generation. Suppose, however, that the govern-
ment also uses debt finance. More generally, the government budget constraint
(GBC) can be written as

∆Bt+1 = τ1tN1t + τ2tN2t + rtBt,
where τ1t and τ2t are taxes (or, if negative, subsidies) for the young and old
generations, respectively. Bt+1 is one-period government debt held by the young
generation of period t. It is determined by the need to satisfy the GBC and to
pay the given interest rate. In per capita terms the GBC is

(1+n)bt+1 = τ1t + τ2t

1+n + (1+ rt)bt, (6.50)

where bt = Bt/N1t .
The budget constraint for the young generation is

s1t = wt − c1t − τ1t − (1+n)bt+1

and their consumption when old is

c2,t+1 = (1+ rt+1)[st + (1+n)bt+1]− τ2,t+1.
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The intertemporal budget constraint is therefore

c2,t+1 = (1+ rt+1)[wt − c1t − τ1t]− τ2,t+1.

We note the absence of debt. Consequently, the optimal decision takes the same
form as before.

The resource constraint for the total economy at time t is

∆Kt+1 = wtN1t + rtKt − c1tN1t − c2tN1,t−1

= wtN1t + rtKt − [wt − st − τ1t − (1+n)bt+1]N1t

− {(1+ rt)[st−1 + (1+n)bt]− τ2,t}N1,t−1.

Hence,

Kt+1 − [st + (1+n)bt+1]N1t

= (1+ rt){Kt − [st−1 + (1+n)bt]N1,t−1} + τ1tN1t + τ2,tN1,t−1

or

(1+n)(kt+1 + bt+1)− st = 1+ rt
1+n [(1+n)(kt + bt)− st−1]+ τ1t + τ2,t

1+n.

Using the government budget constraint, equation (6.50), gives

(1+n)kt+1 − st = 1+ rt
1+n [(1+n)kt − st−1].

Hence the steady-state solution is st = (1+n)kt+1, the same as for an economy
with no government.

If government debt plays no role in either the intertemporal budget constraint
or the determination of savings, then it will not affect the optimal solution
either. We conclude that there is no advantage in not balancing the budget.
Let us therefore reconsider our previous analysis of pensions. In the case of
unfunded pensions the GBC has τ1t = τt , τ2t = τt − pt , and no debt. For fully
funded pensions τ1t = τt and τ2t = −pt = −(1+ rt)τt−1. The GBC is then

(1+n)bt+1 = τt − (1+ rt)τt−1

1+n + (1+ rt)bt
or

(1+n)bt+1 − τt = 1+ rt
1+n [(1+n)bt − τt−1].

Hence, τt = (1 + n)bt+1. Consequently, pension contributions are equivalent
to purchasing government debt, and pension payments are equivalent to the
redemption value of this debt.

6.3.6 Conclusions

The OLG model is useful for analyzing economic problems involving periods
of time that are quite long, in which people are assumed to live for only a
few of these—usually only two. A key feature of the OLG model is that people
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born in a later period have no control over decisions taken in an earlier period.
Unfortunately, problems involving OLG models soon become quite complex
and so the economic models used are usually simplified, and hence somewhat
stylized. Hence the usual assumption of only two periods. It is common in
economic problems for the time period to be more than a matter of months, or
even years, but less than a generation, say twenty-five years. This suggests the
need to have more than two generations. The difficulty is that, as the number
of generations increases, so does the complexity of the analysis. As a result, it
is then usually more convenient to assume an infinite number of periods. Even
so, we have found that it is not easy to compare the solutions of a two-period
OLG model with an infinite-horizon model.

We have used the OLG model to compare funded and unfunded pensions.
We concluded that the slower population growth is, the stronger the case is for
having fully funded pensions.
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The Open Economy

7.1 Introduction

The key distinction between closed and open economies is that they have differ-
ent constraints. In an open economy there is international trade in goods and
services, and international capital flows. Imports remove the restriction that
consumption and investment in the domestic economy are limited to what the
domestic economy can produce. Exports remove the restriction that firms’ sales
are limited by domestic demand. International capital flows allow the domestic
economy to borrow from abroad and to hold foreign assets. In principle, by
being less constrained, an open economy ought to be able to attain a higher
level of welfare than a closed economy. For example, borrowing from abroad
should assist in smoothing consumption in bad times.

The distinction usually emphasized between a closed and an open econ-
omy relates to domestic and foreign goods and services. The importance of
this distinction depends on the extent to which they are substitutes. This will
affect their relative consumption and their relative price, i.e., the (real) terms
of trade: strictly speaking, the price of imports relative to exports where both
are expressed in domestic currency. If, for example, all goods and services are
traded, and if domestic and foreign goods and services were perfect substitutes,
then the terms of trade would be constant (or, ignoring transport costs, unity).
There would then be a single world price for goods and services. Nonetheless,
it would be important to take into account the distinction between domestic
and foreign goods and services.

Not all goods and services are traded internationally. We therefore differenti-
ate between traded and nontraded goods and services (i.e., between tradeables
and nontradeables). We also distinguish between the terms of trade (which
refers only to tradeables) and the real exchange rate, which is the (trade-
weighted) average of the price levels of trading partners relative to the general
price level of the domestic economy. The more a single world price exists for
tradeables, the more likely it is that the main cause of differences between the
real exchange rate and the terms of trade is the relative price of domestic and
foreign nontradeables.

The real exchange rate is also different from the nominal exchange rate; in
fact, in the conventional sense, it is not an exchange rate at all. The real exchange
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rate is the price of goods and services at home compared with the price abroad—
both price levels being expressed in domestic currency. In calculating the real
exchange rate, the average foreign price level is converted into domestic cur-
rency by being multiplied by the nominal effective exchange rate. The price
levels could be either the consumer price index (CPI) or the product-based GDP
deflator. Using the CPI the real exchange rate is more a measure of the rela-
tive costs of living than an exchange rate; using the GDP deflator it is more a
measure of the relative costs of production. Thus the two ways of measuring
the real exchange rate convey different information. In contrast, the nominal
exchange rate is the relative price of currencies: it is the price of foreign cur-
rency in terms of domestic currency. The nominal exchange rate is a bilateral
rate, i.e., the price of one currency in terms of another. The effective nominal
exchange rate is a (trade-weighted) average of the bilateral exchange rates of
trading partners.

In an open economy, a distinction also arises between domestic and foreign
assets. In the absence of capital market imperfections such as capital con-
trols, or incomplete markets which may cause assets to be discounted—and
hence valued—differently in different countries, the choice of which to hold
will depend mainly on their relative rates of return. In the absence of capital
controls, any potential profits arising from differences in domestic and foreign
rates of return (when expressed in the same currency) would result in large
capital flows between countries. This would cause an appreciation (an increase
in value) of the nominal exchange rate of the country with the higher return,
which would tend to eliminate the interest differential. As a result, the capi-
tal account tends to dominate the current account in the determination of a
flexible exchange rate. The imposition of capital controls was a large factor in
the stability of the Bretton Woods fixed-exchange-rate system. In the flexible-
exchange-rate regimes that replaced Bretton Woods, capital controls were found
to be unnecessary. In this chapter we take the nominal exchange rate as given,
leaving discussion of the determination of flexible exchange rates to chapter 12.
We focus instead on the choices between domestic and foreign tradeables and
between tradeables and nontradeables, the determination of the terms of trade
and the real exchange rate, the implications for net asset holding of the current
account, and whether a current-account deficit is sustainable.

For a more detailed and general account of the open economy see Obstfeld
and Rogoff (1996). For recent surveys see Lane (2001) and Obstfeld (2001).

7.2 The Optimal Solution for the Open Economy

7.2.1 The Open Economy’s Resource Constraint

As a result of introducing international trade and capital flows, the resource
constraint for the open economy is different from that of the closed economy.
It is derived from the national income identity for the open economy and the
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balance of payments identity. The national income identity becomes

yt = ct + it + xt −Qtxm
t , (7.1)

where xt denotes exports and xm
t denotes imports expressed in foreign real

prices. At this stage we assume that the domestic economy produces a single
good, as does the rest of the world. As a result,Qt will initially denote both the
terms of trade (the price of imports relative to exports expressed in terms of
domestic currency) and the real exchange rate when it is measured by the GDP
deflator (the foreign producer price level expressed in terms of domestic cur-
rency relative to the domestic producer price level). We also assume that Qt is
exogenous, but we allow it to vary over time. We could have assumed that there
is a single world price, in which case the terms of trade would be fixed over
time; we could then have defined Qt = 1. We retain Qt purely to show where
it would enter the analysis if it were to change. Subsequently, Qt becomes an
endogenous variable in the analysis. The domestic price level is assumed to
be unity at all times. Qtxm

t is imports expressed in terms of domestic prices.
xt −Qtxm

t is net trade. We note that ct and it , which measure domestic expen-
ditures, both include an import component. As domestic output is the sum of
domestic consumption and investment expenditures on domestic production
(plus foreign expenditures on domestic production), Qtxm

t must be subtracted
from total domestic expenditures to obtain domestic output.

The balance of payments (BOP) in nominal terms may be written as

CAt = Ptxt − StP∗t xm
t + R∗t StB∗t − RtBF

t = St∆B∗t+1 −∆BF
t+1, (7.2)

whereCAt is the current-account balance expressed in terms of nominal domes-
tic currency, Rt and R∗t are the domestic and foreign nominal interest rates,
respectively, B∗t is the domestic nominal holding of foreign assets expressed
in foreign currency, BF

t is the foreign holding of domestic assets expressed
in domestic currency, Ft = StB∗t − BF

t is the net asset position expressed in
domestic currency, and R∗t StB

∗
t − RtBF

t is net foreign asset income expressed
in domestic currency.
St is the nominal exchange rate (the domestic price of foreign exchange, or

the price of a unit of foreign currency). An increase in St implies a depreciation
of domestic currency as foreign currency then costs more. Strictly speaking, St
is the nominal effective exchange rate rather than a bilateral nominal exchange
rate. It is, therefore, a weighted average of bilateral rates, where the weights for
each currency represent the proportion of trade involving countries using that
currency. A problem that we face later, in chapter 12, where we consider the role
of the capital account in the determination of flexible exchange rates, is that we
are then dealing with bilateral exchange rates. In this chapter we are concerned
primarily with the trade account, which involves the effective exchange rate.
Ptxt − StP∗t xm

t is the trade account expressed in terms of domestic currency
andxt−Qtxm

t is the trade account expressed in real terms, whereQt = StP∗t /Pt .
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To obtain the BOP in real terms we deflate by the domestic price level, Pt ,
obtaining

xt − StP
∗
t

Pt
xm
t + (1+ R∗t )St

B∗t
Pt
− (1+ Rt)B

F
t
Pt
= St
Pt
B∗t+1 −

BF
t+1

Pt
,

xt − StP
∗
t

Pt
xm
t + (1+ R∗t )

StP∗t
Pt

B∗t
P∗t

− (1+ Rt)B
F
t
Pt
= Pt+1

Pt
St
St+1

P∗t+1St+1

Pt+1

B∗t+1

P∗t+1
,

where lowercase letters denote the equivalent real variables with ft = Ft/Pt =
Qtb∗t − bF

t and where πt+1 = ∆Pt+1/Pt is the inflation rate. The BOP then
becomes

xt −Qtxm
t + (1+ R∗t )Qtb∗t − (1+ Rt)bF

t = (1+πt+1)
[Qt+1b∗t+1

1+∆st+1
− bF

t+1

]
(7.3)

or

xt −Qtxm
t + (1+ R∗t )ft − (Rt − R∗t )bF

t =
(

1+πt+1

1+∆st+1

)(
ft+1 −∆st+1bF

t+1

)
,

(7.4)

where ft is the net holding of foreign assets expressed in terms of domestic
prices at the beginning of period t; ft can be positive (net holdings) or negative
(net debts) and st = lnSt ; consequently,∆st+1 is the proportional rate of change
of the exchange rate between periods t and t + 1.

It is convenient for our analysis of the real open economy to assume that infla-
tion is zero and that the nominal effective exchange rate is constant. Therefore,
∆st+1 = 0 and nominal interest rates are also real interest rates. Accordingly,
they are renamed rt and r∗t . We also assume that rt = r∗t . Equation (7.4) can
now be written more simply as

xt −Qtxm
t + r∗t ft = cat = ∆ft+1, (7.5)

where cat = CAt/Pt is the real current account .
We assume that the domestic economy has no capital controls and that it

is small enough to be able to borrow from (and lend to) world capital mar-
kets without affecting r∗t . Thus r∗t ft denotes interest income (or payments)
on net foreign capital holdings (or debts), and is also expressed in domestic
prices. The left-hand side of equation (7.4) is the current-account position. This
is identical to the change in the net foreign asset position ∆ft+1, i.e., the capital
account. Thus, in order for the economy to increase net savings, it must run a
current-account surplus. If it wants to have a current-account deficit in order to
consume more today than it would if the economy were closed, thereby easing
the constraint provided by the production possibility frontier, it must borrow
from the rest of the world. And if the rest of the world wishes to hold more
domestic assets, then it must accept that the domestic economy will either have
a larger current-account deficit (or a smaller current-account surplus) or that
the shift in asset demand will be absorbed in a revaluation of domestic assets
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with no change in the current account. This has been the situation of the United
States since the 1990s: the rest of the world wants to hold U.S. assets, and so
the United States has to run acurrent-account deficit .

The budget constraint facing the open economy is obtained by combining the
national income identity, equation (7.1), and the balance of payments identity,
equation (7.4), by eliminating net trade xt −Qtxm

t . This gives

(yt + r∗t ft − ct)− it = ∆ft+1, (7.6)

whereyt+r∗t ft−ct can be interpreted as national savings (total income less con-
sumption). Thus the budget constraint says that the current account is national
savings minus investment (i.e., net national savings) and this equals the net
increase in the open economy’s holding of foreign assets—in other words, the
capital account of the balance of payments.

7.2.2 The Optimal Solution

The optimal solution for the centralized open economy involves maximizing
the present value of current and future utility

max
{ct+s ,kt+s ,ft+s}

Vt =
∞∑
s=0

βsU(ct+s)

with respect to ct+s , kt+s , ft+s subject to the budget constraint, equation (7.6),
the capital accumulation equation

∆kt+1 = it − δkt, (7.7)

and the production function
yt = F(kt). (7.8)

The open-economy budget constraint can therefore be rewritten as

F(kt) = ct + kt+1 − (1− δ)kt + ft+1 − (1+ r∗t )ft. (7.9)

The Lagrangian is

L=
∞∑
s=0

{βsU(ct+s)

+λt+s[F(kt+s)− ct+s −kt+s+1+ (1−δ)kt+s −ft+s+1+ (1+ r∗t+s)ft+s]}.
The first-order conditions with respect to {ct+s , kt+s+1, ft+s+1; s � 0} are

∂L
∂ct+s

= βsU ′(ct+s)− λt+s = 0, s � 0,

∂L
∂kt+s

= λt+s[F ′(kt+s)+ 1− δ]− λt+s−1 = 0, s > 0,

∂L
∂ft+s

= λt+s[1+ r∗t+s]− λt+s−1 = 0, s > 0,
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plus the budget constraint (7.9).
Combining the first-order conditions for consumption and net foreign assets

in order to eliminate the Lagrange multipliers gives the open-economy Euler
equation:

βU ′(ct+1)
U ′(ct)

(1+ r∗t+1) = 1. (7.10)

Compared with the decentralized closed economy, therefore, the foreign rate
of return replaces the domestic rate of return. Combining the first-order con-
ditions for capital and net foreign assets gives the equation determining the
optimal capital stock:

F ′(kt+1) = δ+ r∗t+1. (7.11)

Substituting in the Euler equation that the net marginal product of capital is
equal to the world interest rate, i.e., F ′(kt+1)− δ = r∗t+1, would yield the same
Euler equation as that for the closed economy. The optimal solution for capi-
tal is like that for the decentralized solution but with the world interest rate
replacing the domestic interest rate.

7.2.3 Interpretation of the Solution

Consider just two periods t and t + 1, and suppose that ct is cut by a small
amount dct with ct+1 increasing by dct+1 so that Vt is unchanged, where

Vt = U(ct)+ βU(ct+1).

It was shown in chapter 4 that the slope of the resulting indifference curve is

dct+1

dct
= − U ′(ct)

βU ′(ct+1)
.

The open-economy budget constraints for periods t and t + 1 are

cat = ∆ft+1 = yt + r∗t ft − ct − it,
cat+1 = ∆ft+2 = yt+1 + r∗t+1ft+1 − ct+1 − it+1.

Assuming that ft = ft+2 = 0 and eliminating ft+1 gives the two-period
intertemporal budget constraint

(yt − it)+ (yt+1 − it+1)
1+ r∗t+1

= ct + ct+1

1+ r∗t+1
.

The slope of this budget constraint is

dct+1

dct
= −(1+ r∗t+1).

At the point where the budget constraint is tangent to the indifference curve
their slopes are the same, implying that

−dct+1

dct
= U ′(ct)
βU ′(ct+1)

= 1+ r∗t+1.
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ct + 1

yt + 1 −  it + 1

Vt  =  U(ct) +    U(ct + 1)

xt  −  Qt xt < 0

yt  −  it 

ct + 1

IPPF from
domestic
resources

ct1 + rt + 1
*

m

xt + 1 −  Qt + 1xt + 1 > 0m

β

Figure 7.1. The intertemporal solution for an open economy.

This gives the open-economy Euler equation (7.10).
We depict the solution in figure 7.1. We have assumed that there is a trade

deficit in period t. The optimal values {ct, ct+1} are where the budget constraint
is tangent to the indifference curve. Also depicted is the domestic economy’s
intertemporal production possibility frontier (IPPF), representing the consump-
tion possibilities in periods t and t+1 based only on domestic production and
with no international trade. The budget constraint is a tangent to this too but,
unlike the closed economy, in general the point of tangency is now different:
it is at (yt − it, yt+1 − it+1). From the national income identity for the open
economy, equation (7.1),

(yt − it)− ct = xt −Qtxm
t ,

implying that the difference between yt − it and ct is the trade surplus xt −
Qtxm

t .
Consequently, in the case shown in figure 7.1, there is a trade deficit in period

t and there is a trade surplus in period t + 1. This is achieved by consuming
more in period t than if it were a closed economy dependent solely on domestic
production. In period t + 1, the economy must pay for this by consuming less
than it would if it were a closed economy. To finance the trade deficit in period
t it is necessary to borrow (or reduce net assets) during period t with the result
that net foreign assets at the start of period t + 1 are reduced. This is reversed
during period t + 1 by running a trade surplus which restores the stock of net
foreign assets at the start of period t + 2 to its original level. We could have
depicted an alternative situation in which the economy runs a trade surplus in
period t, and a deficit in period t + 1. The key point is that, through trade and
foreign borrowing (or lending), the economy may be able to achieve a higher
level of welfare, Vt , than it could if it were a closed economy.
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7.2.4 Long-Run Equilibrium

Long-run equilibrium in the open economy depends on the world real rate of
return r∗t , which all but the largest economies, such as the United States, will be
too small to affect. If we assume that there is a common rate of time preference
θ at home and abroad, then, due to capital mobility, in the long run rt = r∗t = θ.
The long-run capital stock, investment, and output for the open economy are
then constant with the capital stock being determined from equation (7.11),
where the net marginal product equals the world real rate of interest.

The equilibrium level of consumption is obtained by eliminating trade from
the national income identity (7.1) using the balance of payments (7.5), and
noting that in equilibrium it = δkt . Thus

ct = yt + r∗ft − it
= F(kt)+ r∗ft − δkt. (7.12)

Although imports are part of total consumption, we are unable to obtain an
expression for the equilibrium level of imports from this model. This is because
we have implicitly assumed that imports are perfect substitutes for other
components of consumption. We return to this issue below when we allow
home-produced goods to be imperfect substitutes with foreign goods.

Finally, consider the long-run equilibrium net stock of foreign assets. From
the balance of payments identity, equation (7.5), the initial net asset holding,
which is taken as given, must satisfy

ft = 1
1+ r∗ (Qtx

m
t − xt + ft+1)

= 1
1+ r∗

∞∑
s=0

[Qt+sxmt+s − xt+s
(1+ r∗)s

]
, (7.13)

provided the transversality condition

lim
n→∞

n∑
s=1

ft+s
(1+ r∗)s = 0

holds. If Qt and xt are constant, and as xm
t is part of total consumption, which

is also constant, equation (7.13) implies that in the steady state net foreign asset
holdings satisfy

ft = −xt −Qtx
m
t

r∗
, (7.14)

which may be rewritten as

xt −Qtxm
t + r∗ft = 0.

Hence, in the steady state, the stock of net foreign assets is constant at its initial
level and the current account must be in balance.

In interpreting equation (7.14) we recall that ft and r∗ are given. The equation
therefore determines the long-run trade surplus or deficit. If the initial net stock
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of foreign assets is positive, the equation shows the size of the permanent trade
deficit that a country may sustain given its current interest income from foreign
assets. If the trade deficit is smaller than this, then, in effect, the country has
too large a stock of foreign assets for its level of consumption. It is then said to
be dynamically inefficient. The implication is that it can increase its domestic
consumption of foreign goods and services. If the trade deficit is larger than
this, then the current-account position is commonly said to be unsustainable.
We examine these issues in greater detail below.

7.2.5 Shocks to the Current Account

The open economy is affected by both external and domestic shocks. To illus-
trate, we consider the effects of temporary and permanent external exoge-
nous shocks to exports. These could be due, for example, to a change in for-
eign income or tastes. We continue to assume that the economy is initially in
equilibrium and that r∗t = r∗ = θ and Qt = Q.

7.2.5.1 A Temporary Shock to Exports

Consider a temporary negative shock to exports of ∆x < 0 in period t. From
the balance of payments (7.5),

ft+1 = xt +∆x −Qxm
t + (1+ r∗)ft

= ft +∆x < ft.
Hence there is a temporary fall in net asset holdings ft+1. In subsequent periods
both imports and the net stock of foreign assets will be affected. Assuming that
imports are proportional to consumption, such that

ct = φQxm
t , 0 < φ < 1,

then, from equation (7.12), imports will fall as

xmt+1 =
F(kt+1)+ r∗ft+1 − δkt+1

φQ

= xm
t +

r∗∆x
φQ

< xm
t ,

and so

ft+2 = xt −Q
(
xm
t +

r∗∆x
φQ

)
+ (1+ r∗)(ft +∆x)

= ft+1 + r∗(1− 1
φ
)∆x > ft+1

= ft +
[

1+ r∗
(

1− 1
φ

)]
∆x < ft,

assuming that 0 < [1+ r∗(1− 1/φ)] < 1. More generally,

ft+s = ft +
[

1+ r∗
(

1− 1
φ

)]s−1

∆x,
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and so lims→∞ ft+s = ft . Thus, although the stock of financial assets falls ini-
tially, in the next period it begins a process in which it returns to the original
equilibrium. We note that the capital stock kt remains unchanged throughout
as neither θ nor δ have altered.

7.2.5.2 A Permanent Shock to Exports

We distinguish between two cases: one in which the terms of trade is fixed,
as above, and another in which it is allowed to change to restore steady-state
equilibrium.

Q Fixed. Suppose that exports increase permanently from xt to xt+∆x. For a
given level of imports this would result in an increase in the net stock of foreign
assets such that

ft+1 = xt +∆x −Qxm
t + (1+ r∗)ft

= ft +∆x,

ft+s = ft + (1+ r
∗)s − 1
r∗

∆x.

Hence, ft+s would explode if imports were fixed. However, the increase in net
foreign assets would cause an increase in consumption and hence imports.
This increase must be equal to the increase in exports for net foreign assets
to be stable. Thus, the outcome is that imports must increase permanently by
Q∆xm = ∆x and the net asset position remains unchanged. The question that
then arises is how the increase in imports occurs. Since, in general, imports
will depend on Q, one answer is through a change in Q which so far has been
assumed to be fixed. We now consider what change in Q is required.

Q Flexible. We assume that both exports and imports are functions of Qt .
Suppose that the export function is

xt = x(Qt)+ zt, x′ > 0,

where zt is an exogenous effect on exports, and the import function is

xm
t = xm(Qt), xm′ < 0.

We also recall that ft = Qtb∗t − bF
t . From equation (7.14),

r∗ft = r∗(Qtb∗t − bF
t ) = Qtxm

t (Qt)− xt(Qt)− zt.
If ∆z denotes a permanent exogenous increase in exports, then, assuming that
b∗t and bF

t are given,

r∗∆f = r∗b∗∆Q = (xm +Qxm′)∆Q− (x′ dQ+∆z).
Therefore,

∆z = (xm +Qxm′ − x′ − r∗b∗)∆Q
= −[(εx + εm − 1)xm + r∗b∗]∆Q
= − 1

ψ
∆Q,
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where ψ = [(εx + εm − 1)xm + r∗b∗]−1, εx and −εm are the price elasticities
of exports and imports, respectively, and we have assumed that x � Qxm. We
note that if trade is initially in balance, then

∂(x −Qxm)
∂Q

= (εx + εm − 1)xm � 0 as εx + εm � 1. (7.15)

These are known as the Marshall–Lerner conditions. Consequently, if the trade
elasticities sum to greater than or equal to unity, in order for the fall in exports
not to cause an outflow of capital, Qt would need to increase because ψ > 0.
The increase in Q would raise interest income from abroad but would only
improve the trade balance if the elasticities sum to greater than one.

More generally, the long-run effects on exports, imports, and hence trade
following a permanent exogenous increase in exports, but no change in the
long-run net asset position, would be

∆x = (1−ψεxxm)∆z,
∆(Qxm) = −(1− εm)xmψ∆z,

∆(x −Qxm) = r∗b∗ψ∆z.

As we discuss below,Qt is determined in the short run far more by the behavior
of the nominal exchange rate St than by relative prices, and St is determined in
the short run almost entirely by short-run capital-account considerations and
not by the trade account. Consequently, this long-run result for Qt should not
be regarded as a good guide to the behavior of Qt in the short run.

7.3 Traded and Nontraded Goods

We have assumed so far that all goods and services are traded internationally. In
fact, some goods such as buildings and roads are not traded, and nor are most
services. Financial services are a notable exception as they are sold internation-
ally. We shall now draw a formal distinction between traded and nontraded
goods, which are denoted using the superscripts “T” and “N,” respectively.

Apart from this, the specification of the model is similar in structure to the
open-economy model above. It is summarized in table 7.1, where iTt and iNt refer
to total investment in traded and nontraded capital goods, respectively.

As a result of making the distinction between traded and nontraded goods,
we need to take account of their relative price. For clarity, we allow each to have
a price, rather than just consider their relative price. (Alternatively, we could
have just set one price to unity when the other would become the relative price.)
We will also need the general price level of the economy, which we denote by Pt .

Utility now depends on both types of goods. In general, it can be written
U(cT

t , c
N
t ). It is, however, more convenient to assume that cT

t and cN
t are inter-

mediate goods and services that are involved in producing total consumption
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Table 7.1. The model and notation.

Traded Nontraded

Output yT
t = F(kT

t , k
N
t ) yN

t = G(kT
t , k

N
t )

Consumption cT
t cN

t

Capital kT
t kN

t

Investment iTt = ∆kT
t+1 + δTkT

t iNt = ∆kN
t+1 + δNkN

t

Prices PT
t PN

t

services ct . This enables us to retain the earlier assumption that utility is U(ct).
In particular, we assume that the power utility function is given by

U(ct) = c
1−σ
t − 1

1− σ , σ > 0,

and define total consumption via the constant elasticity of substitution (CES)
function

ct = [α(cT
t )

1−1/γ + (1−α)(cN
t )

1−1/γ]1/(1−1/γ), 0 < α < 1, γ > 0, (7.16)

where γ � 1 is the elasticity of substitution between traded and nontraded
goods.1 We choose a CES function in preference to a Cobb–Douglas function in
order to illustrate the role of substitutability.

Total real expenditures on consumption can be written as follows:

Ptct = PT
t c

T
t + PN

t c
N
t .

Although we have three prices, there are only two that are independent. We
could therefore set the third to unity. It is more instructive if we do not add
this restriction at this stage. Similarly, total real expenditures on investment
and output are

Ptit = PT
t i

T
t + PN

t i
N
t ,

Ptyt = PT
t y

T
t + PN

t y
N
t .

1 The elasticity of substitution between cT and cN is defined as

σ ES = − d ln(cT/cN)
d ln(MPcT/MPcN)

� 0,

where

MPcT = ∂c
∂cT and MPcN = ∂c

∂cN .

In other words, it is the proportional change in the ratio of the inputs cT and cN divided by the
proportional change in the ratio of their marginal products. The more restrictive Cobb–Douglas
function c = (cT)α(cN)1−α has σ ES = 1. As σ ES →∞, (i.e., γ →∞), the function tends to linearity.
As σ ES → 0, (i.e., γ → 1), cT and cN are consumed in fixed proportions.
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The economy’s real resource constraint is a generalization of equation (7.9)
and may be written as

PT
t
Pt
F(kT

t , k
N
t )+

PN
t
Pt
G(kT

t , k
N
t )

= P
T
t
Pt
[cT
t + kT

t+1 − (1− δT)kT
t ]

+ P
N
t
Pt
[cN
t + kN

t+1 − (1− δN)kN
t ]+∆ft+1 − (1+ r∗t )ft. (7.17)

We can now express the open economy’s problem as that of maximizing∑∞
s=0 βsU(ct+s) with respect to {cT

t+s , c
N
t+s , k

T
t+s+1, k

N
t+s+1, ft+s+1; s � 0} subject

to the various production functions, the capital accumulation equations, and
the national resource constraint (7.17). The Lagrangian can be written as

L=
∞∑
s=0

{
βsU(ct+s)+λt+s

[PT
t+s
Pt+s

[F(kT
t+s , k

N
t+s)−cT

t+s−kT
t+s+1+(1−δT)kT

t+s]

+ P
N
t+s
Pt+s

[G(kT
t+s , k

N
t+s)−cN

t+s−kN
t+s+1+(1−δN)kN

t+s]−ft+s+1+(1+r∗t+s)ft+s
]}
.

The first-order conditions are

∂L
∂cT
t+s

= βsc−σt+sα
(
ct+s
cT
t+s

)1/γ
− λt+s P

T
t+s
Pt+s

= 0, s � 0,

∂L
∂cN
t+s

= βsc−σt+s(1−α)
(
ct+s
cN
t+s

)1/γ
− λt+s P

N
t+s
Pt+s

= 0, s � 0,

∂L
∂kT
t+s

= λt+s
{PT

t+s
Pt+s

[FkT,t+s + 1− δT]+ P
N
t+s
Pt+s

GkT,t+s
}
− λt+s−1

PT
t+s−1

Pt+s−1
= 0,

s > 0,

∂L
∂kN
t+s

= λt+s
{PN

t+s
Pt+s

[GkN,t+s + 1− δN]+ P
T
t+s
Pt+s

FkN,t+s
}
− λt+s−1

PN
t+s−1

Pt+s−1
= 0,

s > 0,
∂L
∂ft+s

= λt+s[1+ r∗t+s]− λt+s−1 = 0, s > 0.

From the conditions for ∂L/∂cT
t and ∂L/∂cN

t , and setting s = 0, we obtain
the relative consumption of traded and nontraded goods as a function of their
relative price:

cT
t

cN
t
=
(
α

1−α
PN
t

PT
t

)γ
.

Thus an increase in the relative price of traded goods reduces their consump-
tion relative to nontraded goods. As the elasticity of substitution γ → 0, traded
and nontraded goods are consumed in fixed proportions, and as γ → ∞, when
traded and nontraded goods become perfect substitutes, PN

t becomes a fixed
proportion of PT

t .
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We can therefore write total real consumption as

ct = [α(cT
t )

1−1/γ + (1−α)(cN
t )

1−1/γ]1/(1−1/γ)

= α1/(1−1/γ)cT
t

[
1+

(
1−α
α

)γ(PN
t

PT
t

)1−γ]1/(1−1/γ)

and total consumption expenditures as

Ptct = PT
t c

T
t + PN

t c
N
t

= PT
t c

T
t

[
1+

(
1−α
α

)γ(PN
t

PT
t

)1−γ]
.

Eliminating cT
t /ct from these two equations we obtain an expression for the

general price level as

Pt = PT
t
cT
t
ct

[
1+

(
1−α
α

)γ(PN
t

PT
t

)1−γ]

= [αγ(PT
t )

1−γ + (1−α)γ(PN
t )

1−γ]1/(1−γ). (7.18)

The general price level is therefore a function of traded and nontraded goods
prices, where the aggregator function is also a CES function. Note that we can
still arbitrarily set one of these prices to unity.

It now follows that the individual consumption functions are

cT
t
ct
= αγ

(PT
t
Pt

)−γ
,

cN
t
ct
= (1−α)γ

(PN
t
Pt

)−γ
.

Thus, the share of tradeables (nontradeables) in total consumption decreases
as the relative price of tradeables (nontradeables) increases; the size of the
response increases with the substitutability of tradeables for nontradeables
(the elasticity of substitution γ).

The short-run dynamics are obtained from the Euler equation and these
two consumption equations. For tradeable goods, for example, the first-order
condition for net assets can be rewritten as

∂L
∂cT
t+s

= P
T
t+s
Pt+s

βsc−σt+s − λt+s
PT
t+s
Pt+s

= 0, s � 0.

Hence, from the first-order condition that ∂L/∂ft+1 = 0, we can show that the
Euler equation for consumption takes the usual form:

β
(
ct+1

ct

)−σ
(1+ r∗t+1) = 1.

We could obtain an identical result using the nontradeables equations.
The solutions for the two types of capital stock, which are affected by the

choice of production function, can be obtained from the first-order conditions
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for ∂L/∂kT
t+1, ∂L/∂kN

t+1, and ∂L/∂ft+s . We find that

PT
t+1/Pt+1

PT
t /Pt

{
[FkT,t+1 + 1− δT]+ P

N
t+1

PT
t+1

GkT,t+1

}
= 1+ r∗t+1,

PN
t+1/Pt+1

PN
t /Pt

{
[GkN,t+1 + 1− δN]+ P

T
t+1

PN
t+1

FkN,t+1

}
= 1+ r∗t+1.

These two equations can be solved simultaneously to obtain the long-run
solutions for the two capital stocks.

In the special case where only traded capital goods are used in the production
of traded goods and vice versa, the second term in braces would disappear.
The two equations would then look very like that for the basic closed-economy
model apart from the presence of the world instead of the domestic interest
rate. Consequently, we would obtain

FkT,t+1 = r∗t+1 +πt+1 −πT
t+1 + δT,

GkN,t+1 = r∗t+1 +πt+1 −πN
t+1 + δN,

where πT
t , πN

t , and πt are the inflation rates of traded and nontraded goods,
and the general price level. If the inflation rates are equal, as we would expect
in steady state, then the inflation terms could be omitted.

7.3.1 The Long-Run Solution

In long-run equilibrium all variables are constant and we can therefore omit the
time subscript. From the consumption Euler equation, r∗ = θ, i.e., the foreign
rate of return equals the domestic rate of time preference. The net marginal
products of capital of traded and nontraded goods and services are equal and
satisfy

FkT − δT + P
N

PT
GkT = GkN − δN + P

T

PN
FkN = r∗ = θ.

From this we can derive the optimal steady-state levels of the capital stocks
kT and kN. In the special case where traded goods capital consists only of
traded goods, and nontraded goods capital consists only of nontraded goods,
we obtain the simpler condition

FkT − δT = GkN − δN = r∗ = θ.

Here, on the margin, both capital stocks are increased until their net marginal
products equal the cost of borrowing, which in long-run equilibrium is the rate
of time preference of savers.
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The long-run equilibrium values for the other variables are

cT = F(kT)− δTkT, (7.19)

cN = G(kN)− δNkN, (7.20)

PT

PN
= α

1−α
(
cT

cN

)γ
, (7.21)

P = [αγ(PT)1−γ + (1−α)γ(PN)1−γ]1/(1−γ), (7.22)

c = α−γ
(
PT

P

)γ
cT = (1−α)−γ

(
PN

P

)γ
cN. (7.23)

We now have a complete long-run solution. The logic behind this solution is
that the capital stocks are determined first, followed by the consumption of
traded and nontraded goods and services, and hence total consumption. The
relative consumption of traded and nontraded goods and services determines
the relative prices of traded and nontraded goods and services. To determine
individual prices we need to introduce the normalization rule discussed earlier
(for example, we could set P = 1)—we can then solve simultaneously for the
other two prices from the last two equations.

The long-run solution will be disturbed by productivity shocks to the pro-
duction of traded and nontraded goods and services. A permanent productivity
increase to F(kT) will increase cT, and hence raise PN/PT, implying that PT will
fall. Similarly, a permanent productivity increase to G(kN) will increase cN, and
hence reduce PN/PT, implying that PN will fall.

7.4 The Terms of Trade and the Real Exchange Rate

We recall that the terms of trade is the price of imports (expressed in terms
of domestic currency) relative to exports, and the real exchange rate is the
ratio of the world price level (expressed in terms of domestic currency) to the
home price level. Thus the terms of trade involves only traded goods and ser-
vices, whereas the real exchange rate involves traded and nontraded goods and
services. The real exchange rate is therefore not so much an exchange rate,
as exchange may not be involved, as a comparison of price levels (producer
costs or costs of living). If there are no nontraded goods and services, the real
exchange rate is the same as the terms of trade.

We denote the terms of trade by

QT = SP
T∗

PT
,

where PT and PT∗ are the prices of domestic and foreign tradeables, respec-
tively, and S is the nominal (effective) exchange rate; SPT∗ is then the price of
imports in domestic currency terms. We now denote the real exchange rate by

Q = SP
∗

P
,



�

�

“wickens” — 2007/10/15 — 13:08 — page 161 — #179
�

�

�

�

�

�

7.4. The Terms of Trade and the Real Exchange Rate 161

where P and P∗ are the home and world price levels. An increase in QT implies
a real depreciation, i.e., an increase in competitiveness. An increase in Q can
be interpreted as an increase in the purchasing power of domestic residents,
or a fall in the domestic cost of living, relative to the rest of the world. We now
consider some of their properties, including some special cases.

7.4.1 The Law of One Price

According to the law of one price (LOOP) there is a single price throughout
the world for each tradeable when prices are expressed in the same currency
(see Isard 1977). This is brought about by goods arbitrage, i.e., buying where the
good is cheapest and selling where it is highest. If this holds for all tradeables—
and if tastes are identical across countries, there are no constraints on trade or
monopolies, and if prices adjust instantaneously—then trade weights would be
the same in each country and the terms of trade would be constant over time
and identical for each country. We could then write

PT = SPT∗

whenQT = 1. More generally, the LOOP does not imply constant terms of trade
if home and foreign countries produce different goods. These are, of course,
strong assumptions but they are commonly made implicitly in open-economy
macroeconomics, especially in the determination of floating exchange rates.

7.4.2 Purchasing Power Parity

Purchasing power parity (PPP) is where the purchasing power of domestic res-
idents relative to the rest of the world is constant. In other words, the real
exchange rate is constant. A strong version of PPP asserts that the real exchange
rate is the same at each point in time; a weak version assumes that it is constant
only in the long run. Relative PPP assumes that the change in the real exchange
rate is constant.

In principle, there is no reason why Q should be constant, even in the long
run. To see this, consider the causes of changes to Q implied by the theory
above. They could be due to changes in the prices of tradeables, nontradeables,
or the nominal exchange rate. At this stage, as we are still working in real terms
and not focusing on the determination of nominal prices, we also assume that
any change in the nominal exchange rate S is exogenous. If, for convenience,
we assume that foreign and domestic parameters are identical, so that α = α∗
and γ = γ∗, then it follows from equation (7.22) that

Q = SP
∗

P

= S
[
αγ(PT∗)1−γ + (1−α)γ(PN∗)1−γ
αγ(PT)1−γ + (1−α)γ(PN)1−γ

]1/(1−γ)

= SP
T∗

PT

[(
1+

(
1−α
α

)γ(PN∗
PT∗

)1−γ)/(
1+

(
1−α
α

)γ(PN

PT

)1−γ)]1/(1−γ)
.
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The first factor on the right-hand side is the terms of trade. ThusQ depends on
the terms of trade and on the relative prices of domestic and foreign nontraded
and traded goods: PN/PT and PN∗/PT∗.

If the terms of trade is constant, the real exchange rate could be rewritten as

Q =
[(

1+
(

1−α
α

)γ(SPN∗
PT

)1−γ)/(
1+

(
1−α
α

)γ(PN

PT

)1−γ)]1/(1−γ)
, (7.24)

indicating that it is the relative nontraded goods prices when expressed in the
same currency, and not traded goods prices, that determine the real exchange
rate in the long run. The dependence of the real exchange rate on the relative
price of nontradeables is even more apparent if the elasticity of substitution
γ = 1. Using l’Hôpital’s rule, we can show that in this case,

lim
γ→1

Q =
[
SPN∗

PN

]1−α
. (7.25)

If we were to take the notion thatQ is an exchange rate literally, then it would
no doubt appear counterintuitive to have an exchange rate being determined
by nontraded economic activity which is not exchanged. Consider, therefore,
the effect of an improvement in productivity in domestic relative to foreign
nontraded production. This would reduce domestic nontraded prices. It would
therefore cause an improvement in the real exchange rate (an increase in Q).
It will also increase the attractiveness in the domestic economy of nontraded
goods relative to traded goods, which will reduce the demand for traded goods,
whether of domestic or foreign origin. Traded goods therefore become less
competitive compared with nontraded goods and so a switch of expenditure
occurs between traded and nontraded goods. It is this that is being reflected in
the increase in the real exchange rate. This is an example of what is known as
a Balassa–Samuelson effect: a factor causing Q to change in the long run.

7.4.3 Some Stylized Facts about the Terms of Trade and the
Real Exchange Rate

Although PPP implies that Q is constant and the LOOP could give rise to a
constant terms of trade, the empirical evidence shows overwhelmingly that
neither are constant, either in the short run or in the long run. The key empirical
facts are these (see Goldberg and Knetter (1997), Engel (2000), Obstfeld and
Rogoff (2000), or, for a summary, Obstfeld (2001)).

• For most countries with a freely floating (i.e., not managed) nominal
exchange rate the statistical properties of the real exchange rate and the
terms of trade are very similar.

• Shocks to the real exchange rate take a long time to disappear. It has been
estimated that they have a half-life of 2–4.5 years, i.e., after this time only
half the total effect of the shock is complete.

• The real exchange rate and the terms of trade are almost as volatile as the
nominal exchange rate S.



�

�

“wickens” — 2007/10/15 — 13:08 — page 163 — #181
�

�

�

�

�

�

7.5. Imperfect Substitutability of Tradeables 163

• The correlation coefficients between the real exchange rate and the terms
of trade and the relative prices of nontradeables when expressed in the
same currency (i.e., SPN∗/PN) lie in the range 0.92–1.00 for most OECD
countries and are close to unity after five years.

• The correlation between the real exchange rate and the terms of trade
increases with the volatility of S.

There are two possible explanations for these findings. Either they all indicate
that changes in the nominal exchange rate dominate movements in the real
exchange rate, the terms of trade, and goods prices, whether traded or not,
whereas, in comparison, goods prices are slow to change, i.e., they are sticky.
Or, less plausibly, the evidence is consistent with home and foreign countries
conducting their monetary policies by targeting their price levels.

Figure 7.2 provides some further evidence. It shows for the period 1972–2006
the real-exchange-rate (RER) index based on the CPI between the United States
and the United Kingdom, their nominal exchange rate (ER), and the relative
price levels of the United States and the United Kingdom (PUS/PUK), both also
expressed as an index, with all indices based on 2000 = 100. It reveals that,
following the floating of exchange rates in 1973 and the removal of capital
controls by the United Kingdom in 1981, the real and nominal exchange rates
quickly converged. By comparison, their relative price level (the ratio of U.K. to
U.S. prices and also the ratio of the real to the nominal-exchange-rate indices)
is far less volatile and has fallen smoothly. This fall reflects the decline in the
high U.K. inflation rates of the 1970s compared with those of the United States,
and the subsequent similarity of their inflation rates afterwards; both price
levels have, of course, risen steadily over the period. Thus, monetary policy
since 1990 seems to have resulted in a convergence of the two exchange rates
and has confirmed that fluctuations in the real exchange rate are due almost
entirely to those in the nominal exchange rate.

7.5 Imperfect Substitutability of Tradeables

Previously we have considered imperfect substitutability between tradeables
and nontradeables. We now examine imperfect substitutability among trade-
ables. First we discuss some pricing implications of the degree of substitutabil-
ity between tradeables. We then develop a model which allows imperfect sub-
stitutability both among tradeables and between tradeables and nontradeables.

7.5.1 Pricing-to-Market, Local Currency Pricing, and
Producer Currency Pricing

Economies typically consume both their own and foreign traded goods and
services. In the absence of restrictions on trade, this suggests that they must in
general be imperfect substitutes. If domestic and foreign tradeables were close
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Figure 7.2. Stylized facts about the real exchange rate and the terms of trade.

substitutes, then for the typical small economy both export and import prices
would be determined by world prices. In this case a depreciation of domestic
currency, or an increase in world prices, would result in higher export and
import prices measured in domestic currency.

If, however, the domestic economy is large, then domestic tradeables prices
are more likely to dominate foreign tradeables prices. The price of imports
would then be determined largely by the price of local competing products. This
is known as pricing-to-market or local-currency-pricing (LCP). An exchange-rate
depreciation would then have little effect on domestic prices.

Now suppose that domestic and foreign tradeables have a low elasticity
of substitution. In this case, domestic and foreign producers would have
monopoly power both in their own and in foreign markets, which would enable
them to set prices in each market. This has been called producer-currency-
pricing (PCP) by Betts and Devereux (1996) and Devereux (1997). An exchange-
rate depreciation would not then necessarily affect the domestic currency price
of exports or imports. The terms of trade would not then increase.

7.5.2 Imperfect Substitutability of Tradeables and Nontradeables

We now develop a model which allows imperfect substitutability both among
tradeables and between tradeables and nontradeables. We retain the assump-
tion that utility is U(ct) = (c1−σ

t − 1)/(1 − σ), but we assume that total
consumption ct is the two-level Cobb–Douglas function

ct = (c
T
t )γ(c

N
t )1−γ

γγ(1− γ)1−γ , (7.26)

cT
t =

(cH
t )α(c

F
t )1−α

αα(1−α)1−α , (7.27)

where, as before, cT
t and cN

t are the consumption of tradeables and nontrade-
ables and cH

t and cF
t are tradeables consumption produced at home and abroad.
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In terms of the first model in this chapter, this notation is equivalent to denoting
exports as xt = cF∗

t and imports as xm
t = cF

t . The use of the Cobb–Douglas func-
tion is more restrictive than the CES function used before as it assumes a unit
elasticity of substitution but this simplifies the analysis, as does the particular
form of the Cobb–Douglas function that is used.

Consumption expenditures are

Ptct = PT
t c

T
t + PN

t c
N
t , (7.28)

PT
t c

T
t = PH

t c
H
t + PF

t c
F
t , (7.29)

where Pt is both the consumer price level and the general price level, PT
t and PN

t
are the prices of tradeables and nontradeables, and PH

t and PF
t are the prices of

home and foreign tradeables. We denote the price of home output by PH
t and

of foreign output by PH∗
t .

The terms of trade is now given by

QT
t =

PF
t

PH
t

= StP
H∗
t

PH
t
,

as PF
t = StPH∗

t , where PH∗
t is the foreign currency price of foreign tradeables

(domestic imports).
Total domestic outputyt , which for simplicity we take as exogenous, satisfies

Ptyt = PH
t c

H
t + PN

t c
N
t + PH

t c
F∗
t , (7.30)

where cF∗
t is domestic exports. The nominal balance of payments deflated by

the domestic price level Pt is

PH
t
Pt
cF∗
t − P

F
t
Pt
cF
t + r∗t ft = ∆ft+1.

Combining this with equation (7.30) to eliminate exports gives the real resource
constraint:

yt = P
H
t
Pt
cH
t +

PN
t
Pt
cN
t +

PF
t
Pt
cF
t + ft+1 − (1+ r∗t )ft. (7.31)

The Lagrangian is

L=
∞∑
s=0

{
βsU(ct+s)

+λt+s
[
yt+s − P

H
t+s
Pt+s

cH
t+s −

PN
t+s
Pt+s

cN
t −

PF
t+s
Pt+s

cF
t+s −ft+s+1+ (1+ r∗t+s)ft+s

]}
.
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The first-order conditions with respect to {cH
t+s , c

F
t+s , c

N
t+s , ft+s+1; s � 0} are

∂L
∂cH
t+s

= (βsc−σt+s)
(
γ
ct+s
cT
t+s

)(
α
cT
t+s
cH
t+s

)
− λt+s P

H
t+s
Pt+s

= 0, s � 0,

∂L
∂cF
t+s

= (βsc−σt+s)
(
γ
ct+s
cT
t+s

)[
(1−α)c

T
t+s
cF
t+s

]
− λt+s P

F
t+s
Pt+s

= 0, s � 0,

∂L
∂cN
t+s

= (βsc−σt+s)
[
(1− γ)ct+s

cN
t+s

]
− λt+s P

N
t+s
Pt+s

= 0, s � 0,

∂L
∂ft+s

= λt+s[1+ r∗t+s]− λt+s−1 = 0, s > 0.

From the first two conditions and for s = 0 the relative consumption of home
and foreign goods is a function of the terms of trade QT

t and is given by

cH
t

cF
t
= α

1−αQ
T
t . (7.32)

Due to the Cobb–Douglas function this has a unit elasticity of substitution.
Hence, an increase in the relative price of imported goods causes an equipro-
portional increase in the consumption of home goods relative to imports.

Substituting equation (7.32) into equation (7.27) gives the demand functions

cH
t

cT
t
= α(QT

t )
1−α, (7.33)

cF
t

cT
t
= (1−α)(QT

t )
α. (7.34)

Substituting equation (7.32) into equation (7.29) gives the share of expenditures
on home tradeables in total tradeables expenditures as

PH
t c

H
t

PT
t c

T
t
= α.

It then follows from equations (7.27) and (7.29) that the price of tradeables is

PT
t = (PH

t )
α(PF

t )
1−α. (7.35)

Intuitively, given the Cobb–Douglas structure, we can derive corresponding
results for total consumption, total tradeables, and total nontradeables. From
the first-order conditions for cH

t and cN
t and for s = 0 we obtain

cH
t

cN
t
= α γ

1− γ
PN
t

PH
t
. (7.36)

From this and equations (7.33) and (7.35),

cT
t

cN
t
= γ

1− γ
PN
t

PT
t
. (7.37)
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From equations (7.26) and (7.28) the share of tradeables in total consumption
is

PT
t c

T
t

Ptct
= γ.

It follows that the general price level is

Pt = (PT
t )
γ(PN

t )
1−γ (7.38)

= (PH
t )
αγ(PF

t )
(1−α)γ(PN

t )
1−γ. (7.39)

Since PF
t = StPH∗

t and PF∗
t = S−1

t P
H
t , the real exchange rate between two

countries with identical preferences is

Qt = StP
∗
t

Pt

= St(P
H∗
t )αγ(PF∗

t )(1−α)γ(P
N∗
t )1−γ

(PH
t )αγ(P

F
t )(1−α)γ(P

N
t )1−γ

= (QT
t )
(2α−1)γ

(StPN∗t
PN
t

)1−γ
. (7.40)

Compared with equation (7.24), equation (7.40) shows more clearly the rela-
tion between the real exchange rate, the terms of trade, and the relative price
of nontradeables. The sign of the effect of an improvement (increase) in the
terms of trade—implying greater competitiveness—on the real exchange rate
depends on whether the share of home tradeables exceeds that of foreign trade-
ables: if it does, then there is an increase in the real exchange rate; otherwise,
the real exchange rate falls. Why does this occur? Suppose, for example, that
the cause of the change in the terms of trade is an increase in the price of
foreign tradeables, then because home tradeables have a greater share than
imports, the foreign price level rises more than the domestic price level. As
before, an increase in the relative price of foreign nontradeables increases the
real exchange rate. Finally, we note that when the terms of trade is constant
with QT

t = 1, equation (7.40) reduces to equation (7.25) if γ is replaced by α.
The rest of the solution is as before. In particular, the consumption Euler

equation is again

β
(
ct+1

ct

)−σ
(1+ r∗t+1) = 1.

And if r∗t = r∗ = θ, then consumption is constant in the long run. From the
real resource constraint, equation (7.31), the steady-state net asset position is

ft = 1
r∗

(PH
t
Pt
cH
t +

PN
t
Pt
cN
t +

PF
t
Pt
cF
t −yt

)

= 1
r∗

[(PH
t c

H
t

PT
t c

T
t

PT
t c

T
t

Ptct
+ P

N
t c

N
t

Ptct
+ P

F
t c

F
t

PT
t c

T
t

PT
t c

T
t

Ptct

)
ct −yt

]

= [αγ + 1− γ + (1−α)γ]ct −yt
r∗
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= ct −yt
r∗

(7.41)

= −(P
H
t /Pt)c

F∗
t − (PF

t /Pt)c
F
t

r∗
. (7.42)

Equation (7.42) is the counterpart of equation (7.14) derived earlier. Equa-
tion (7.42) relates net assets to trade; equation (7.41) implies that, in the long
run,

ct = yt + r∗ft,
i.e., total consumption equals the permanent income from output and net
foreign assets.

7.6 Current-Account Sustainability

Previously we considered the determination of the current account and the net
foreign asset position in the long run. We concluded that in the steady state
the current account must be in balance but a country may have a permanent
trade deficit whose size depends on the interest income from foreign assets.
Consequently, a permanent current-account balance is a sustainable situation.
In practice, the current-account position will vary over time, sometimes being
in surplus and sometimes in deficit. This raises the more general question of
whether or not a sequence of expected future current-account positions is sus-
tainable. We consider two approaches. First, we show how our earlier analysis of
the sustainability of the fiscal stance may be applied to the current account. We
refer to this as balance of payments sustainability. We then examine a theory
known as the intertemporal approach to the current account, which incorpo-
rates the optimality of consumption and savings decisions in a dynamic general
equilibrium model.

In view of the common perception that a current-account deficit is undesir-
able, particularly one as large as that of the United States in recent years, we
recall at the outset that it may be possible to have a long-run trade deficit and,
in certain circumstances yet to be defined, it may even be possible to have a
long-run current-account deficit. We also note that an economy whose assets
the rest of the world wants to hold may need to run a current-account deficit in
order to offset inflows on the capital account of the balance of payments. This
has also been the position of the United States in recent years.

7.6.1 Balance of Payments Sustainability

We start with the balance of payments written in nominal terms as

CAt = PT
t xt − StPT∗

t x
m
t + R∗t StB∗t − RtBF

t = St∆B∗t+1 −∆BF
t+1,

where, as defined earlier, xt is exports, xm
t is imports, B∗t is the domestic nom-

inal holding of foreign assets expressed in foreign currency, BF
t is the foreign

holding of domestic assets expressed in domestic currency, PT
t is the price of
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exports, PT∗ is the foreign currency price of imports, St is the nominal effective
exchange rate, Rt and R∗t are the domestic and world nominal interest rates,
Ft = StB∗t −BF

t is the net asset position, and CAt is the current-account balance
expressed in nominal domestic currency terms.

We note that financial assets generally include equity as well as bonds, and
equity has a different return due to its higher risk premium. For simplicity,
however, we draw no distinction between the two and we ignore any consequent
valuation effects.

We now express the balance of payments as a proportion of nominal GDP by
dividing through by nominal GDP Ptyt , where Pt is the general price level and
yt is real GDP, to obtain

PT
t
Pt

(xt −QT
t x

m
t

yt

)
+ (1+ R∗t )

ft
yt
− (Rt − R∗t )

bF
t
yt

=
(
(1+πt+1)(1+ γt+1)

1+∆st+1

)(
ft+1

yt+1
−∆st+1

bF
t+1

yt+1

)
, (7.43)

where

QT
t =

StPT∗
t

PT
t
, Qt = StP

∗
t

Pt
, bF

t =
BF
t
Pt
, b∗t =

B∗t
P∗t
, ft = FtPt = Qtb

∗
t − bF

t ,

γt is the rate of growth of GDP, and st = lnSt . This may be rewritten as a
difference equation in ft/yt :

τt
yt
+ (1+ R∗t )

ft
yt
=
(
(1+πt+1)(1+ γt+1)

1+∆st+1

)
ft+1

yt+1
, (7.44)

where

τt
yt
= P

T

Pt

(xt −QT
t x

m
t

yt

)
− (Rt − R∗t )

bF
t
yt
+
(
(1+πt+1)(1+ γt+1)

1+∆st+1

)
∆st+1

bF
t+1

yt+1
(7.45)

can be interpreted as the “primary” current-account surplus expressed as a
proportion of GDP. This is analogous to the primary government deficit.

We note that if the domestic equals the world interest rate, which would hap-
pen if uncovered interest parity (UIP) holds ex post (i.e., if Rt = R∗ +∆st+1; see
chapter 11 for a derivation of UIP) and the exchange rate is constant, or if there
is foreign holding of domestic assets, then τt is just the trade balance. The
two additional terms on the right-hand side of equation (7.45) occur if these
conditions do not hold. The first is excess interest payments to foreign holders
of domestic debt due to domestic interest rates exceeding foreign rates. The
second captures the cost of a revaluation of real foreign holdings of domes-
tic assets due to a depreciation of the exchange rate; the higher the domestic
nominal rate of growth, the greater this cost is.

The analysis of balance of payments sustainability depends on whether equa-
tion (7.44) is a stable or an unstable difference equation. It is, therefore, similar
in form to the analysis of fiscal sustainability in chapter 5. We assume that UIP
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holds and that πt , γt , R∗t , and ∆st are constant, taking the values π , γ, R∗, and
∆s = 0. It then follows that R = R∗. Equation (7.44) becomes

ft
yt
= (1+π)(1+ γ)

1+ R∗
ft+1

yt+1
− 1

1+ R∗
PT

Pt

(xt −QT
t x

m
t

yt

)
. (7.46)

Thus the analysis depends on whether (1 + π)(1 + γ) is greater than or less
than 1 + R∗. Under long-run UIP this is approximately equivalent to whether
π + γ is greater than or less than R. This is the same condition that arises in
the analysis of the sustainability of fiscal policy.

First we consider the case where R < π + γ when (7.46) is a stable differ-
ence equation and is solved backwards. In this case the analysis of balance of
payments sustainability consists of determining whether ft/yt remains finite.
Given our assumptions, it clearly does, whether the trade balance is positive or
negative. A trade deficit would therefore be sustainable.

We therefore focus on the unstable case where R > π+γ when we solve (7.46)
forwards. This is how we proceeded earlier when analyzing the optimal solution
for the open economy. If ft < 0, we must determine whether the sequence of
expected future trade surpluses and deficits is sufficient to repay net debts; and
if ft > 0, we must determine whether the sequence of expected future trade
surpluses and deficits is sufficient to use up net foreign assets.

Solving equation (7.46) forwards gives

ft
yt
=
(
(1+π)(1+ γ)

1+ R
)n ft+n
yt+n

− 1
1+ R

n∑
i=0

(
(1+π)(1+ γ)

1+ R
)i
Et
(
PT

Pt+i

(xt+i −QT
t+ix

m
t+i

yt+i

))
.

Taking limits as n→∞ gives the transversality condition

lim
n→∞

(
(1+π)(1+ γ)

1+ R
)n
Et
(
ft+n
yt+n

)
= 0. (7.47)

If this holds then we obtain the intertemporal, or present-value, balance of
payments condition expressed as a proportion of GDP:

− ft
yt

� 1
1+ r

∞∑
i=0

(
(1+π)(1+ γ)

1+ R
)i
Et
(
PT

Pt+i

(xt+i −QT
t+ix

m
t+i

yt+i

))
.

This can be interpreted as follows. If the economy has a negative net asset
position (i.e., if ft/yt < 0), then it needs the present value of current and
expected future real trade surpluses

PT

Pt+i

(xt+i −QT
t+ix

m
t+i

yt+i

)

as a proportion of GDP to be positive and large enough to pay off net debt. And
if the economy has a positive net asset position (i.e., if ft/yt > 0), then the
present value of current and future trade deficits must be sufficient to exhaust
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current net assets, otherwise the economy would be holding an excess level of
assets.

In the special case where the real trade surplus is constant and positive, i.e.,

PT

P

(
xt −QTxm

y

)
> 0,

a simple connection emerges between net indebtedness and the long-run real
trade surplus that is required to sustain a given level of net indebtedness:

− f
y

� 1
R − (π + γ)

PT

P

(
xt −QTxm

y

)
. (7.48)

This is an extension of the earlier result, equation (7.14), as it takes account
of economic growth, which was previously set to zero. We note that for a
given nominal interest rate R, an inflation term is also present. But since higher
inflation will tend to result in a correspondingly higher nominal interest rate,
thereby leaving the real interest rate R −π constant, we may ignore the effect
of inflation.

To find the implications of this analysis for the current account, we note from
equation (7.43) that in the long run the real current account is the real trade
balance plus real net interest earnings, hence

CA
Py

= P
T

P

(
xt −QTxm

y

)
+ R f

y
.

Substituting for
PT

P

(
xt −QTxm

y

)

from equation (7.48) gives

−CA
Py

� (π + γ)
(
− f
y

)
.

It follows that, if there is nominal economic growth, then it is possible to have
a permanent and sustainable current-account deficit (CA < 0), even if f/y < 0,
provided that the current-account deficit does not exceed the right-hand side.
The higher the rate of growth of nominal GDP, the more likely it is that a per-
manent current-account deficit can be sustained without increasing a country’s
net indebtedness. This contrasts with the earlier result without nominal income
growth, when the current account had to be in balance in the long run.

Dynamic efficiency requires that in the long run economic agents (house-
holds, government, or the economy) aim to exactly consume their assets. If
their spending plans are not sufficient to use up their assets, then they are said
to be dynamically inefficient. Unless they have a bequest motive, households
should therefore raise consumption. If the economy has a positive net foreign
asset position, then it follows that it should have a long-run trade deficit suffi-
cient to run down its assets. Thus the economy should ensure that for f > 0 it
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has a trade deficit that does not exceed the left-hand side of

[R − (π + γ)] f
y

� PT

P

(
xt −QTxm

y

)
> 0.

It would clearly be a mistake to have a positive net asset position and a trade
balance or surplus.

7.6.1.1 The Long-Run Equilibrium Terms of Trade and Real Exchange Rate

The long-run equilibrium terms of trade must satisfy equation (7.48); hence

QT � x + (P/PT)[R − (π + γ)]f
xm

.

Accordingly, the equilibrium terms of trade requires neither a long-run real
trade balance nor a long-run current-account balance. Higher exports, lower
imports, and f > 0, a higher real interest rate, and a lower rate of economic
growth will all tend to cause a higher equilibrium terms of trade.

The real exchange rate satisfies

Q = QT PT/P
PT∗/P∗

.

Consequently, differences between the terms of trade and the real exchange rate
are due to differences in the domestic and foreign prices of exports relative to
the general price levels. If the terms of trade are constant and QT = 1, then
Q = (PT/P)/(PT∗/P∗). More generally, the long-run equilibrium real exchange
rate must satisfy

Q � x + (P/PT)[R − (π + γ)]f
xm

PT/P
PT∗/P∗

.

We may contrast this result with the concept of the fundamental equilib-
rium exchange rate (FEER), which is not based on the notion of current sus-
tainability but on long-run current-account balance (see Williamson 1993). The
FEER is analogous to requiring a balanced government budget in the long run.
Our analysis has shown that in the long run it is possible to have both a per-
manent trade and current-account deficit; and if there is nominal economic
growth, then long-run current-account balance is sufficient, but not necessary,
for current-account sustainability.

7.6.1.2 The Twin Deficits

The current account is the consolidation of the accounts of the private and
public sectors. It is therefore often of interest to ask whether a current-account
deficit is due to the private sector consuming too much (not saving enough) or
whether it is due to the public sector consuming too much and borrowing too
much. The twin-deficits problem arises when the current-account deficit seems
to be due to the government deficit as the private sector is in balance. In the
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United States at the end of 2003 the annual government deficit was roughly
$520 billion, while the current-account balance was around $550 billion. Both
are just over 5% of GDP. As a result, the U.S. current-account deficit was often
attributed to the government deficit. We reconsider this interpretation below.

Using earlier notation, the national resource constraint is

yt = ct + it + gt + xt −Qtxm
t .

The private-sector budget constraint is

∆(bgt+1 + b∗t+1)+ ct + it −Qtxm
t + Tt = yt + r∗t (bgt + b∗t ),

where bgt is private-sector real holdings of domestic government debt, b∗t is
private-sector real net holdings of foreign debt, and Tt is taxes. We assume that
there is a single world real interest rate r∗t . The net savings of the private sector
are total income less total expenditures:

[yt + r∗t (bgt + b∗t )]− (ct + it −Qtxm
t + Tt) = ∆(bgt+1 + b∗t+1).

The government’s budget constraint is

gt + r∗t (bgt + bF
t ) = Tt +∆(bgt+1 + bF

t+1),

where bF
t is foreign net holdings of domestic government debt. The government

deficit is therefore

[gt + r∗t (bgt + bF
t )]− Tt = ∆(bgt+1 + bF

t+1).

The balance of payments identity can be written as

xt −Qtxm
t + r∗t (b∗t − bF

t ) = ∆(b∗t+1 − bF
t+1)

and the trade balance as

xt −Qtxm
t = yt − (ct + it + gt)
= {[yt + r∗t (bgt + b∗t )]− (ct + it −Qtxm

t + Tt)}
+ {Tt − [gt + r∗t (bgt + bF

t )]} − r∗t (b∗t − bF
t ),

where the first term in braces on the right-hand side is the private-sector balance
and the second term in braces is the government balance. Eliminating the trade
balance from the balance of payments identity we obtain

{[yt + r∗t (bgt + b∗t )]− (ct + it −Qtxm
t + Tt)} + {Tt − [gt + r∗t (bgt + bF

t )]}
= ∆(b∗t+1 − bF

t+1).

The left-hand side of this equation is the current-account balance. It can be seen
to consist of the sum of the private-sector balance and the government balance.

According to the twin-deficits argument, if the private sector is in balance,
then a current-account deficit must be due solely to the government deficit. The
right-hand side of this equation is the capital account. It consists of increases
in the net private holdings of foreign assets and decreases in the net sales of



�

�

“wickens” — 2007/10/15 — 13:08 — page 174 — #192
�

�

�

�

�

�

174 7. The Open Economy

government debt. If the private sector is in balance and the government has
a deficit, then the government must sell its debt to the rest of the world, i.e.,
∆bF

t+1 < 0.
As previously noted, this argument is sometimes used to suggest that a cur-

rent-account deficit is the fault of government. This ignores the possibility that,
due to capital market imperfections, the rest of the world wants to hold so
much government debt that the resulting inflow of capital requires an offset-
ting current-account deficit. This would happen automatically as the increase
in the foreign demand for domestic currency would cause an exchange-rate
appreciation, which would increase the terms of trade and worsen the trade,
and hence the current-account, deficit. The increase in the demand for domes-
tic assets would also cause a revaluation of the private sector’s financial wealth
and hence raise consumption and imports, which would tend to worsen the
current account even more. Further, the government would find it easier to
finance a deficit because it could sell more of its debt abroad and less at home,
but the worsening of the current-account deficit would not be attributable to
the government deficit.

7.6.2 The Intertemporal Approach to the Current Account

The above discussion of current-account sustainability—which we called bal-
ance of payments sustainability to distinguish it from the intertemporal
approach to the current account—has general applicability irrespective of any
particular macroeconomic theory. In a dynamic general equilibrium model of
the economy the general argument can be specialized to take account of the
optimality of consumption and savings decisions by combining the BOP with a
simple intertemporal model of consumption. This special case is known as the
intertemporal model of the current account (see Obstfeld and Rogoff 1995b;
Sheffrin and Woo 1990).

Consider the balance of payments identity written in real terms as

ft+1 = (1+ r∗)ft + τt,
where r∗ is the world real interest rate, net exports (trade) is

τt = yt − ct − it − gt,
the real current account is

cat = qt + r∗ft − ct,
the national income identity is

yt = ct + it + gt + τt,
and net output is defined as

qt = yt − it − gt = ct + τt.
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It follows from the transversality condition for the BOP that sustainability
requires that limn→∞(ft+n/(1+ r∗)n) = 0 and hence

ft = −
∞∑
s=0

1
(1+ r∗)s+1

τt+s

= −
∞∑
s=0

1
(1+ r∗)s+1

(qt+s − ct+s).

From earlier results, a representative consumer maximizing the intertempo-
ral utility function

∑∞
s=0(1/(1+ r∗)s)u(ct+s) subject to the national income

identity sets consumption equal to the permanent income derived from wealth
Wt (the “life-cycle theory”):

ct = r∗Wt,
where wealth in the open economy is given by

Wt =
{

1
1+ r∗

∞∑
s=0

1
(1+ r∗)s qt+s + ft

}
.

Substituting ct into the expression for the current account gives the following
condition for current-account sustainability:

cat = − r∗

1+ r∗
∞∑
s=0

qt+s − qt
(1+ r∗)s

= −
∞∑
s=0

∆qt+s
(1+ r∗)s . (7.49)

Thus, to be sustainable, a current-account deficit must be offset by the present
value of changes in current and future net output.

This result may be compared with our discussion of life-cycle theory in chap-
ter 4. We showed then that current savings st should be equal to the present
value of current and future changes in income xt :

st = −
∞∑
s=0

∆xt+s
(1+ r)s ,

where r is the rate of return on savings. We interpreted this to mean that savings
are undertaken to compensate for expected future falls in income. This suggests
that we could also interpret equation (7.49) to mean that a positive current-
account position is required to offset expected future falls in net output.

7.7 Conclusions

We have extended the closed-economy model to allow for trade between coun-
tries. This has the effect of removing the constraint that a closed economy
can only consume in each period what it produces. For example, by borrow-
ing from abroad, the domestic economy can import goods and services, and
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thereby temporarily increase consumption. The debt incurred must be repaid
later by running a current-account surplus and consuming less.

Initially we introduced the open economy simply as a way of removing a
constraint on domestic consumption by allowing imports that are perfect sub-
stitutes for domestic output. This improved welfare by allowing additional
intertemporal substitution. We then generalized this model in two ways. First
we noted that not all goods and services are traded internationally and exam-
ined the case where there are tradeables and nontradeables. We then relaxed
the assumption that there is perfect substitution between domestic and foreign
tradeables and allowed them to be imperfect substitutes.

Two common assumptions in open-economy models, especially for the long
run, are those of purchasing power parity, which implies a constant real
exchange rate, and the law of one price, which under certain circumstances
implies a constant terms of trade. The empirical evidence is, however, strongly
against these assumptions, particularly in the short run. By introducing a dis-
tinction between tradeables and nontradeables we are able to separate the terms
of trade from the real exchange rate. Somewhat counterintuitively, we find that
it is relative productivity growth in the nontradeable sector that is the main
determinant of the real exchange rate in the long run, and hence of the relative
costs of living between countries. As a result, PPP will not in general hold even
in the long run. Throughout this analysis we took the nominal exchange rate as
exogenous.

In a closed economy there are two budget constraints: the household and gov-
ernment budget constraints. In an open economy there is an additional budget
constraint: the balance of payments. The balance of payments must always be
satisfied as it is an accounting identity. As a result, if there is a current-account
deficit, there must be a capital outflow to pay for it, and if the rest of the world
wants to increase its holdings of domestic assets, then the current account
must be in deficit. This raises the question of what constraints there are on
the size and persistence of a country’s current-account deficit. We have shown
that in a static economy, if there are positive net foreign assets, there can be a
permanent trade deficit but the current account must be in balance in the long
run. In contrast, if the economy is growing, it may be possible to have a perma-
nent current-account deficit. The size of the deficit depends on the size of asset
holdings and the rate of growth. It can also be shown that in a general equilib-
rium model a positive current-account position is required to offset future falls
in net output, i.e., output less investment and government expenditures.

In chapter 12, where our focus is on determining the nominal exchange rate,
we shall further develop some of the ideas presented in this chapter when we
consider the redux model of Obstfeld and Rogoff (1995a).
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The Monetary Economy

8.1 Introduction

In this chapter we examine the role of money in the macroeconomy. This also
allows us to introduce the general price level and inflation. Although we have
previously included money and the price level in the government budget con-
straint, in order to focus exclusively on fiscal policy we treated them as constant.
Similarly, although we mentioned the domestic price level in our discussion of
the real exchange rate and the terms of trade, our principal concern was rela-
tive prices. Our focus now is on the demand for money and credit, and on some
of the implications for the real economy of holding money. We also consider
some aspects of the relation between money and inflation. We revert to the
closed economy in this discussion.

We start with a brief history of money and its role in the economy. We review
the reasons for the emergence of money and why in recent years we have been
moving toward a cashless economy. We argue that this has had a profound
impact on the way that monetary policy is conducted and how monetary policy
affects the economy. We therefore revise our model of the economy so that we
can analyze the decisions to hold both money and credit. We consider four the-
ories of money demand. The first is the “cash-in-advance” (CIA) model, in which
it is assumed that goods and services can be purchased only in exchange for
cash. The second assumes that real-money balances are an independent source
of utility and can be treated, in effect, as a commodity—this is the “money-in-
utility” (MIU) model. The third model assumes that holding money economizes
on shopping time and hence is an intermediate, rather than a final, good. This
is called the “money as an intermediate good” (MIG) model. The fourth theory
assumes that consumption transactions impose a real resource cost that affects
the budget constraint, which can only be lowered by using money. We defer until
chapter 13 our detailed discussion of monetary policy and its implications for
the real economy and inflation. A more general and detailed discussion of the
theory of money can be found in Walsh (2005).

8.2 A Brief History of Money and Its Role

The presence of money in the economy is usually taken for granted. It may
therefore come as a surprise that there is no consensus among economists
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about whether, at least in theory, money is needed at all or, if it is needed, what
money is. There are large literatures on both issues which are beyond the scope
of this book to discuss. Instead we briefly review the history of money with a
view to explaining what the issues are concerning its role.

It is important to distinguish between three roles for money. One is in the
use of money in transactions, especially for goods and services. A second is
the use of money as a store of wealth in order to transfer consumption across
time. The third is money as credit that can be borrowed for consumption today
and repaid later. In principle, money is not needed for any of these purposes as
there are other means of carrying them out. The case for using money largely
rests on convenience and cost.

For example, all transactions could be conducted through barter: exchanging
goods and services for goods and services. The disadvantages of barter are
well-known: the transactions costs are likely to be very high as barter requires
a coincidence of wants among the parties to the exchange, and searching for
partners is very time consuming, especially when exchanging large items for
small items. Exchanging goods and services for gold and silver (and sometimes
other precious commodities) was an early solution to these problems of barter.
Gold and silver also solved the problem of providing a store of wealth and a
means of creating credit. The main problem with gold and silver is that they are
in limited supply. As economies grow they need an increasing supply of these
precious metals to finance transactions. This tends to drive up the price of gold
and silver, which provides an incentive to economize on their use.

The key to the introduction of money was the need to write contracts when
borrowing and lending was involved. Initially, the contracts were to borrow
gold and silver today and to repay the gold or silver in the future. There was
a charge for borrowing, which usually consisted of an additional gold or silver
payment on redemption of the contract. The emergence of secondary markets,
in which the contracts themselves were bought and sold for gold, saw the start
of replacing gold and silver with paper. In this way, i.e., by receiving gold or
silver today for a promise of gold or silver in the future, a creditor could alter the
maturity structure of assets and hence make more loans. All that was needed for
this to function effectively was confidence that the debt would be redeemed. The
principal borrowers were kings and governments, usually in order to finance
the prosecution of wars. Large landowners were the main creditors. With the
growth of trade, merchants began to dominate both borrowing and lending.

Initially, credit markets were created by money lenders and in the main
the sums involved were probably fairly small. Subsequently, successful money
lenders institutionalized themselves into banks, but still performed a similar
function. Savers began to deposit their gold and silver in banks for safekeeping
and received an income for doing this. They also sold notes of credit at a dis-
count to the banks in exchange for immediate gold or a gold deposit. The banks
made a profit because the discounted purchase price of the credit note was less
than its redemption value. As the banks then took on the risk of default, there
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was a transfer of risk to the bank, which was factored into the discount rate,
together with a charge because the bank had to wait for payment.

The larger banks became the main source of credit for kings and government.
Some were granted a monopoly of such transactions and became the state or
central bank. More recently, most central banks came to be owned by the state.
In effect, the state began to borrow from the central bank. The central bank
raised the credit by borrowing from the public, issuing promises to repay the
debt in the future.

At first, all of this borrowing and lending was denominated in gold or silver.
As bank loans and secondary markets for discounting credit notes and loans
by other banks developed, the banks observed that they did not need to match
their loans (their liabilities) by holding an equal amount of gold and silver pro-
vided depositors were confident that they could withdraw their deposits and
receive gold or silver at any time of their choosing. Banks therefore started to
increase their profits by lending a multiple of their gold and silver holdings.

The state, observing the creation of credit by banks without the need for a
100% backing in gold and silver, began to pay for its purchases of goods and
services with standardized notes of credit of small denomination which could
be redeemed for gold on application to the central bank. The public, having
confidence that they could obtain gold and silver if they wanted, accepted these
notes in exchange for providing goods and services to the state. Further, notes
began to be accepted in exchange for goods and services for all transactions in
the economy, in settling debts, and as deposits in banks.

The final step in the emergence of fiat money was due to the success of
this system and occurred when governments suspended the convertibility of
these notes into gold and silver and claimed a monopoly on the supply of such
credit notes. At this point the notes became pure fiat money. The supply of fiat
money by the central bank is called outside money and forms the liabilities of
the central bank. This is held by the public mainly in the form of bank deposits.
These deposits differ in their accessibility; some are available instantly, others
are available only after a time. The deposits are lent in the form of credit to
the public; some of this credit takes the form of loans to firms or is the result
of purchasing, or discounting, the debt issued by commercial companies. The
deposits of the public in the banking system are called inside money and form
the liabilities of the rest of the banking system. The sum of outside and inside
money is the total supply of money, and forms the liabilities of the whole bank-
ing system. Money therefore consists of a broad range of bank liabilities which
differ in their degree of liquidity—i.e., their ease of use for instant purchases.
Some, such as fiat money is cash in hand and is the most liquid; at the other
extreme are time deposits of much longer maturity and bills which are not
instantly available.

Two more recent developments may be added to this history. The first is the
emergence of “plastic” or “electronic” money, i.e., the use of debit and credit
cards. These days some purchases may only be made for cash; they are mainly
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small ticket items. Increasingly, purchases may be made using a debit or credit
card. A debit card allows bank accounts to be debited instantly through elec-
tronic communication. A credit card delays payment for a fixed period such
as a month, or until the purchaser decides to make repayment. Given that
increasingly all bank accounts pay interest, albeit at a low rate for instant access
accounts, we are moving toward a cashless economy based on credit.

The second development relates to the activities of banks and the emergence
of nonbank financial companies. It is now common for banks to offer mortgages
and for building societies and mortgage companies to provide banking facilities.
As a result, homeowners are able to borrow against the security of their homes,
thereby making one of the most illiquid of assets into an increasingly liquid
asset. Further, credit cards, which were initially issued only by banks, are now
being offered by a very wide range of companies, including retailers and even
charities.

These developments have had a profound impact on the way monetary pol-
icy is conducted. No longer can money and credit be controlled effectively by
quantity limits or targets based on the supply of money. Controlling highly
liquid types of money is no guarantee that less liquid types of money will not
be made instantly liquid, or that credit is being controlled. Instead, monetary
policy has to rely on the use of interest rates to change the cost of borrowing
as this affects all types of credit. Many households have a portfolio of assets
ranging from bank accounts to stock market equity and to property. The com-
position of these portfolios depends on their rates of return as well as their
convenience value in use. Debts may be considered as assets with a negative
return. By rebalancing their portfolios, including taking on more debt, these
households can rapidly generate liquidity.

The new challenge for monetary policy is to establish a reliable link between
interest rates and final expenditures on goods and services that takes into
account the composition of portfolios and their rebalancing as a result of a
change in interest rates. The role of money in this is becoming increasingly
unclear as it is just one among many assets. Increasingly, therefore, monetary
policy must focus on the whole portfolio of assets.

A classic on the history of money is Friedman and Schwarz (1963). See also
Friedman (1968).

8.3 Nominal Household Budget Constraint

In chapter 4, where the decentralized decisions of households were first
considered, the household budget constraint was written in real terms as

∆at+1 + ct = xt + rtat,
where income xt was taken to be exogenous, at denoted total real assets held at
the start of period t, and rt was the real rate of return. In writing the household
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budget constraint in nominal terms in chapter 5 we distinguished between two
types of assets:Mt , the nominal stock of money held at time t; and Bt , the total
expenditure on 1-period bonds made at the start of period t − 1. We now write
the budget constraint in nominal terms as

∆Bt+1 +∆Mt+1 + Ptct = Ptxt + RtBt, (8.1)

where Pt is the general price level, Rt is the nominal rate of return on bonds,
and RtBt is the interest income from bonds, which is paid at the start of period
t. Further details on the definition of bonds and their pricing is provided in
chapters 5, 10, and 11.

The real budget constraint is obtained by deflating equation (8.1) by the
general price level to give

(1+πt+1)bt+1 − bt + (1+πt+1)mt+1 −mt + ct = xt + Rtbt, (8.2)

where bt = Bt/Pt , mt = Mt/Pt , and πt+1 = ∆Pt+1/Pt is the inflation rate. The
real budget constraint can also be written as

(1+πt+1)[∆bt+1 +∆mt+1]+ ct = xt + (Rt −πt+1)bt −πt+1mt

= xt + rt+1bt −πt+1mt. (8.3)

Comparing this with the way the real household budget constraint was written
before, we note that total real assets are at = bt +mt , the real rate of return
on bonds is rt+1 = ((1 + Rt)/(1 + πt+1)) − 1 � Rt − πt+1, and the real rate of
return on money is −πt+1. (Here we are continuing to assume perfect foresight.
In the absence of perfect foresight the definition of the real interest rate, which
is associated with Fisher, is slightly different with actual replacing expected
future inflation. We then obtain a new definition of the real interest rate: rt+1 =
Rt − Etπt+1.)

Assuming that inflation is positive, the real rate of return on money is neg-
ative. This is because money has a zero nominal return and hence loses its
purchasing power due to inflation. The fall in the value of nominal money bal-
ances is in effect a tax—the “inflation tax”—and is “seigniorage” income to the
issuer of money (the government).

In the static steady state all real stocks are constant, including the real stock
of bonds and money. This implies that ∆b = ∆m = 0, but π is not necessarily
zero. If the growth rate of nominal money is ∆M/M = µ, then

∆m
m

= ∆M
M

− ∆P
P
= µ −π = 0,

implying that in equilibrium π = µ. This equilibrium condition should be inter-
preted with some care. If money growth is exogenous, then in the long run infla-
tion will equal the rate of growth of money. But if inflation is determined exoge-
nously, as in inflation targeting, then in the long run money growth equals this
rate of inflation, i.e., causation is reversed. We cannot distinguish between these
two ways of conducting monetary policy just from the equilibrium condition.
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8.4 The Cash-in-Advance Model of Money Demand

We have seen from the household budget constraint that holding money im-
poses real costs. So why do households hold money? The usual reasons given
are that money reduces transactions costs and provides both a store of value
and a unit of account. The cash-in-advance (CIA) model focuses exclusively
on the transactions demand for money and is the simplest theory of money
demand that we examine (see Clower 1967; Lucas 1980). It assumes that all
goods and services must be paid for in full with cash at the time of purchase. In
fact, as economies usually operate with less money than total nominal expen-
ditures, the quantity of money required is less than total nominal expendi-
tures. For simplicity, however, we assume that money holdings are equal to
total expenditures. In this case, the nominal demand for money is

MD
t = Ptct

and hence the real demand for money is mD
t = MD

t /Pt = ct . We assume that
the money supply MS

t is determined exogenously. Money-market equilibrium
implies that MD

t = MS
t = Mt .

The household’s problem is to maximize
∑∞
s=0 βsU(ct+s) with respect to

{ct+s , bt+s+1,mt+s+1; s � 0} subject to its budget constraint, equation (8.2).
The Lagrangian is

L =
∞∑
s=0

{βsU(ct+s)+ λt+s[xt+s + (1+ Rt+s)bt+s +mt+s
− (1+πt+s+1)(bt+s+1 +mt+s+1)− ct+s]

+ µt+s[mt+s − ct+s]}.
The first-order conditions are

∂L
∂ct+s

= βsU ′(ct+s)− λt+s − µt+s = 0, s � 0,

∂L
∂bt+s

= λt+s(1+ Rt+s)− λt+s−1(1+πt+s) = 0, s > 0,

∂L
∂mt+s

= λt+s − λt+s−1(1+πt+s)+ µt+s = 0, s > 0.

Subtracting the first-order condition for bonds from that for money gives

µt+s = λt+sRt+s , s = 1,2, . . . .

Hence, βsU ′(ct+s) = λt+s(1+ Rt+s), and since

λt+s+1

λt+s
= 1+πt+s+1

1+ Rt+s+1
,

the Euler equation for period t + 1 is

βU ′(ct+1)
U ′(ct)

1+ Rt
1+πt+1

= 1
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or
βU ′(ct+1)
U ′(ct)

(1+ rt+1) = 1. (8.4)

This is the same as for the real economy.
We now consider the solutions for ct andmt . In long-run equilibrium, ∆ct =

∆mt = 0, implying that rt = θ, where β = 1/(1 + θ), and money demand in
both the short and long run is mt = ct . The solution for consumption in the
short run is very similar to our previous analysis. Assuming for convenience
that Rt and πt are constant, the household budget constraint is

(1+π)(bt+1 +mt+1)+ ct = xt + (1+ R)bt +mt,

or, written in terms of at = bt +mt ,

at = 1
1+ R(ct − xt + Rmt)+

(
1+π
1+ R

)
at+1.

Eliminating at+1, at+2, . . . gives the intertemporal budget constraint

at = 1
1+ R

n−1∑
s=0

(
1+π
1+ R

)s
(ct+s − xt+s + Rmt+s)+

(
1+π
1+ R

)n
at+n.

If r = R −π > 0, then the transversality condition

lim
n→∞

(
1+π
1+ R

)n
at+n = 0

is satisfied and hence

at = 1
1+ R

∞∑
0

(
1+π
1+ R

)s
(ct+s − xt+s + Rmt+s).

If we assume that ct and mt are in long-run equilibrium, then ct+s = ct and
mt+s =mt for s � 0; hence

ct � r
1+ r

∞∑
0

xt+s
(1+ r)s + rbt −πmt.

If, in addition, xt+s = xt for s � 0, then we obtain the long-run consumption
function

ct = xt + rbt −πmt (8.5)

= xt + rbt
1+π . (8.6)

Equation (8.5) shows that, when inflation is positive, the higher the stock of real-
money balances, the lower is consumption. This implies that having to pay for
consumption expenditures with cash has introduced a nonneutrality into the
economy. This is because a nominal variable (inflation) affects a real variable
(consumption) due to the loss of the real purchasing power of money hold-
ings when inflation is nonzero. We return to this point later when we consider
the super-neutrality of money. Equation (8.6) shows that, due to paying for con-
sumption using cash, the higher is inflation, the lower is consumption for given
total income xt + rbt .
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8.5 Money in the Utility Function

We assume now that households consider the broader benefits of holding
money by including real-money balances as an argument of their utility func-
tion. This is called the “money in the utility” (MIU) model and is due to Sidrauski
(1967). In our next money-demand model we offer some justification for this.
A feature of the cash-in-advance model is that the demand for money is not
interest sensitive. In the MIU model allowance is made for the opportunity cost
of holding money in terms of lost interest. We show that this makes the demand
for money sensitive to interest rates and encourages households to economize
on holding money balances.

We assume that the representative household’s utility function is

U(ct,mt), Uc > 0, Ucc � 0, Um > 0, Umm � 0,

implying that holding more money improves utility. We also note that mt is
predetermined in period t, whereas mt+1 is, in part, the outcome of decisions
taken in period t.1

We now write the household’s problem as that of maximizing

Vt =
∞∑
0

βsU(ct+s ,mt+s)

subject to the household budget constraint. The Lagrangian is

L =
∞∑
s=0

{βsU(ct+s ,mt+s)+ λt+s[xt+s + (1+ Rt+s)bt+s +mt+s
− (1+πt+s+1)(bt+s+1 +mt+s+1)− ct+s]}.

The first-order conditions are

∂L
∂ct+s

= βsUc, t+s − λt+s = 0, s � 0,

∂L
∂bt+s

= λt+s(1+ Rt+s)− λt+s−1(1+πt+s) = 0, s > 0,

∂L
∂mt+s

= βsUm, t+s + λt+s − λt+s−1(1+πt+s) = 0, s > 0.

Subtracting the first-order condition for money from that for bonds for s = 1
gives

Um,t+1 = λt+1Rt+1.

Combining this with the first-order condition for consumption we obtain

Um,t+1 = Uc,t+1Rt+1. (8.7)

The left-hand side measures the additional utility from holding an extra unit of
real balances at the start of period t + 1. The right-hand side shows the cost of

1 An alternative dating convention is sometimes used in which the household budget constraint
is written as ∆Bt+1 + ∆Mt + Ptct = Ptxt + RtBt . In this alternative formulation money is accu-
mulated over period t − 1 for use at the start of period t rather than being accumulated during
period t for use in period t + 1.
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this: the loss of interest over period t through holding money instead of bonds,
and hence the loss of consumption in period t + 1 evaluated at the marginal
utility of period t + 1 consumption.

To illustrate what sort of money-demand function may emerge, consider a
specific form for the utility function:

U(ct,mt) = c
1−σ
t − 1

1− σ + η
(m1−σ

t − 1

1− σ
)
.

Equation (8.7) becomes

ηm−σ
t+1 = c−σt+1Rt+1.

The real demand for money is therefore

mt+1 = ct+1

(
Rt+1

η

)−1/σ
.

Thus an increase in the nominal interest rate reduces the demand for real
money balances.

The nominal demand for money is

Mt+1 = Pt+1ct+1

(
Rt+1

η

)−1/σ
. (8.8)

This can be contrasted with the money-demand function in the CIA model,
which is just Mt+1 = Pt+1ct+1. Thus an increase in the interest rate reduces the
nominal demand for money. We note that if the bond is risk free, then Rt+1 is
known at time t. This implies that the risk-free rate at time t affects the quantity
of money demanded at the start of period t + 1 in order to pay for period t + 1
consumption.

The first-order conditions for consumption and bonds give the same Euler
equation as for the CIA model, namely equation (8.4). Consequently, apart from
the dependence of money on the nominal interest rate, the long-run steady-
state solutions for consumption and money demand are similar to those in
the CIA model. For a suitable choice of scale factor, so that (Rt+1/η)−1/σ < 1,
real-money balances in the MIU model can be made less than in the CIA model.
Economizing on real-money balances would then reduce the real cost of holding
money relative to the CIA model.

Further intuition about these results may be obtained by considering first a
small increase in money in period t + 1 of dmt+1 that leaves utility in period
t + 1 unchanged. This implies that

dUt+1 = Uc,t+1 dct+1 +Um,t+1 dmt+1 = 0,

and hence the gain in utility from holding extra money Um,t+1 dmt+1 equals the
loss of utility from a lower level of consumption. This is equal to

dct+1 = −Um,t+1

Uc,t+1
dmt+1.
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The two-period intertemporal budget constraint obtained from equation (8.1)
is

(1+πt+1)(1+πt+2)(bt+2 +mt+2)+ (1+πt+1)ct+1 + (1+ Rt)ct
= (1+πt+1)xt+1 + (1+ Rt+1)xt + (1+ Rt)(1+ Rt+1)(bt +mt)

− (1+πt+1)Rt+1mt+1 − (1+ Rt+1)Rtmt.

Partial differentiation of this while holding everything except ct+1 and mt+1

constant gives the change in ct+1:

dct+1 = −dmt+1Rt+1.

Thus

Um,t+1 = Uc,t+1Rt+1,

which is equation (8.7).
Now consider the effect of a small reduction in ct of dct and a change in ct+1

and mt+1 that leaves Vt constant so that

dVt = Uc,t dct + β(Uc,t+1 dct+1 +Um,t+1 dmt+1) = 0,

or

−Uc,t dct = β(Uc,t+1 dct+1 +Um,t+1 dmt+1). (8.9)

The loss utility in period t must therefore be compensated by a gain in utility
in period t + 1 from either additional consumption or money holding, or both.
Partially differentiating the two-period intertemporal budget constraint gives

(1+πt+1)dct+1 + (1+ Rt)dct = −(1+πt+1)Rt+1 dmt+1;

hence

dct+1 = − 1+ Rt
1+πt+1

dct − Rt+1 dmt+1, (8.10)

implying that each unit reduction in consumption in period t raises consump-
tion in period t + 1 by 1 + rt+1 minus the interest cost of having to increase
money holdings in period t + 1. Substituting for dct+1 in equation (8.9) gives

−Uc,t dct = −β 1+ Rt
1+πt+1

Uc,t+1 dct + β(Um,t+1 − Rt+1Uc,t+1)dmt+1. (8.11)

From equation (8.7) the last term is zero. What remains gives the usual Euler
equation

βUc,t+1(1+ rt+1)
Uc,t

= 1.
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8.6 Money as an Intermediate Good or the Shopping-Time Model

Microeconomic theories of money explain its existence as a response to the
high cost and inefficiency both of barter and of tying up scarce precious met-
als like gold and silver in transactions. The amount of money that is held for
transactions purposes will depend on its convenience in saving time spent on
shopping. According to this view, money is an intermediate good that is held
to reduce shopping time. We consider a variant of the shopping-time model
of money of Ljunqvist and Sargent (2004) that differs primarily in the timing
convention used.

We assume that households allocate their total time (normalized to unity)
between work nt , leisure lt , and shopping st to give the time constraint

nt + lt + st = 1.

And we suppose that the time spent shopping can be expressed as a function
of consumption and real-money balances:

st = S(ct,mt), (8.12)

where S, Sc, Scc, Smm � 0 and Sm, Scm � 0.2 Household utility is now obtained
from consumption and leisure (not money), hence

U = U(ct, lt),
where Uc,Ul,Ucl � 0 and Ucc,Ull � 0.

If we were to substitute st from equation (8.12) into the utility function, then
we could write it as a derived utility function V(ct,nt,mt) given by

V(ct,nt,mt) = U[ct,1−nt − S(ct,mt)].

This would provide a justification for the MIU model as a derived utility
function. We could then express the household’s problem as maximizing∑∞
s=0 βsV(ct+s , nt+s ,mt+s) subject to the household budget constraint

(1+πt+1)bt+1 + (1+πt+1)mt+1 + ct = wtnt + (1+ Rt)bt +mt.

Instead, to emphasize that utility is not directly dependent on money, we
formulate the household’s problem as maximizing

∑∞
s=0 βsU(ct+s , lt+s) subject

to the household budget constraint and the time constraint. The Lagrangian is
then

L =
∞∑
s=0

{βsU(ct+s , lt+s)+ λt+s[wt+snt+s + (1+ Rt+s)bt+s +mt+s
− (1+πt+s+1)(bt+s+1 +mt+s+1)− ct+s]

+ µt+s[nt+s + lt+s + S(ct+s ,mt+s)− 1]}.

2 Ljunqvist and Sargent define their shopping-time cost function with Mt+1/Pt replacing mt .
This implies that shopping time is reduced through accumulating money balances in period t.
We assume that shopping time is reduced by holding real balances which were accumulated in
the previous period.
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The first-order conditions are

∂L
∂ct+s

= βsUc, t+s − λt+s + µt+sSc,t+s = 0, s � 0,

∂L
∂lt+s

= βsUl, t+s + µt+s = 0, s � 0,

∂L
∂nt+s

= λt+swt+s + µt+s = 0, s � 0,

∂L
∂bt+s

= λt+s(1+ Rt+s)− λt+s−1(1+πt+s) = 0, s > 0,

∂L
∂mt+s

= λt+s − λt+s−1(1+πt+s)+ µt+sSm,t+s = 0, s > 0.

It follows from the first-order conditions for bonds and money that

λt+sRt+s = µt+sSm,t+s .
Combining this with the first-order conditions for consumption and leisure
gives, for s = 1,

−Ul,t+1Sm,t+1 = (Uc,t+1 −Ul,t+1Sc,t+1)Rt+1. (8.13)

Sm,t+1 measures the saving in shopping time from holding one additional unit
of real money. Each unit of time saved provides Ul,t+1 in extra utility. Thus the
left-hand side measures the extra utility from holding one more unit of real-
money balances. Each unit of real-money balances that is held costs Rt+1 in
foregone interest and Uc,t+1Rt+1 units of lost utility from having to reduce con-
sumption. However, the lost consumption also saves on shopping time, which
adds to utility. The right-hand side therefore measures the net loss of utility
from holding one more unit of real-money balances.

Solving equation (8.13) for mt+1 gives the demand for real-money balances.
In general, due to the functional form of the shopping cost function, this will
only give an implicit demand for money, which may be written as

m(mt+1, ct+1, lt+1, Rt+1) = 0.

An example that illustrates an explicit solution is the case where the utility
function has the log-linear form

U(ct, lt) = ln ct + η ln lt

and the shopping cost function is

st = ψ ctmt
.

In this case,

ψη
st+1

lt+1mt+1
=
(

1
ct+1

−ψη st+1

lt+1ct+1

)
Rt+1.

Hence the demand for real-money balances is given by

mt+1 = ct+1

[
ψη(st+1/lt+1)

1−ψη(st+1/lt+1)

]
R−1
t+1. (8.14)
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This example has been constructed so that it is easy to compare with
the previous money-demand functions. Once again we have a transactions
demand and a negative interest rate effect. The additional feature is the
dependence of money demand on the ratio of shopping to leisure time. As
∂mt+1/∂(st+1/lt+1) > 0, an increase in shopping time relative to leisure time
raises the demand for money, thereby reducing the cost of shopping. We also
note that, compared with the CIA and MIU models, the need to use time for
shopping will result in less time for leisure and, probably, work. The latter
would mean less income and hence less consumption. In recent years we have
observed an increase in online shopping, which has required a greater use of
debit and credit cards instead of money. Online shopping reduces both the time
spent shopping and the demand for cash in hand. At the same time, it is also
highly likely that the holding of broad money will increase due to the increase
in credit-card debt. For further discussion of money demand see Walsh (2005,
chapters 2 and 3).

8.7 Transactions Costs

So far we have sought to explain the holding of money by arguing either that
it is required in order to make transactions, or that it provides utility directly,
or that it does so indirectly by increasing leisure by economizing on shopping
time. We now assume that there is a real resource cost to making consumption
transactions and that using money may be able to reduce this. This idea is
associated with Brock (1974, 1990). We consider the formulation of the problem
by Feenstra (1986), who showed that various different ways of taking account
of transactions costs can be captured by the addition of a term representing
these costs to the household budget constraint.

We therefore rewrite the household’s real budget constraint, equation (8.2),
as

(1+πt+1)bt+1−bt + (1+πt+1)mt+1−mt + ct +T(ct,mt) = xt +Rtbt, (8.15)

where T(ct,mt) is the real resource cost of consumption transactions, T � 0,
T(0,m) = 0, Tc, Tcc, Tmm � 0, Tm,Tmc � 0, and c + T(c,m) is quasi-concave.
These assumptions imply that transactions costs increase at an increasing rate
as consumption rises, but fall, though at a diminishing rate, as money increases.

The household’s problem is to maximize
∑∞
s=0 βsU(ct+s) with respect to

{ct+s , bt+s+1,mt+s+1; s � 0} subject to its budget constraint, equation (8.15).
The Lagrangian is

L=
∞∑
s=0

{βsU(ct+s)+λt+s[xt+s + (1+Rt+s)bt+s +mt+s
− (1+πt+s+1)(bt+s+1+mt+s+1)− ct+s −T(ct+s ,mt+s)]}.
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The first-order conditions are

∂L
∂ct+s

= βsU ′(ct+s)− λt+s(1+ Tc,t+s) = 0, s � 0,

∂L
∂bt+s

= λt+s(1+ Rt+s)− λt+s−1(1+πt+s) = 0, s > 0,

∂L
∂mt+s

= λt+s(1− Tm,t+s)− λt+s−1(1+πt+s) = 0, s > 0.

As
λt+s+1

λt+s
= 1+πt+s+1

1+ Rt+s+1
,

the Euler equation for period t + 1 is

βU ′(ct+1)
U ′(ct)

1+ Tc,t
1+ Tc,t+1

(1+ rt+1) = 1, (8.16)

and

Tm,t+1 = −Rt+1. (8.17)

In steady state, when ∆ct = ∆mt = 0, we obtain rt = θ once more. The
steady-state solutions for consumption and money balances are obtained from
equation (8.17) and the long-run household budget constraint. Assuming that
in the long run ct = c,mt =m, bt = b, Rt = R, πt = π , and rt = r , the long-run
household budget constraint and equation (8.17) become

c +πm+ T(c,m) = x + (1+ θ)b, (8.18)

Tm(c,m) = −R, (8.19)

which are two nonlinear equations in c and m. Closed-form solutions cannot
therefore be obtained.

We consider the effects on the long-run solutions of changes in x, b, and R,
where we take all of them as given. Since

[
Tc + 1 Tm +π
Tmc Tmm

][
dc
dm

]
=
[

1 1+ θ 0

0 0 −1

]⎡⎢⎢⎣
dx
db
dR

⎤
⎥⎥⎦ ,

we have [
dc
dm

]
= 1
∆

[
Tmm (1+ θ)Tmm Tm +π
−Tmc −(1+ θ)Tmc −(Tc + 1)

]⎡⎢⎢⎣
dx
db
dR

⎤
⎥⎥⎦ ,

where ∆ = Tmm(Tc + 1)− Tmc(Tm +π). Assuming that ∆ > 0, and that partial
derivatives of T(c,m) are nonzero, the signs of the derivatives are given by

[
dc
dm

]
=
[+ + ±
+ + −

]⎡⎢⎢⎣
dx
db
dR

⎤
⎥⎥⎦ .
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Thus, in the long run, the demand for money increases due to a rise in x and
b and a fall in R, as in the MIU and MIG models. We also note that for x, b, and
R given, from equation (8.19), ∂m/∂c > 0, implying that higher consumption
requires larger real-money holdings.

Since, from equation (8.18), ∂m/∂c = −(Tc + 1)/(Tm + π) and this must
be positive, we conclude that Tm + π < 0, which confirms our assumption
that ∆ > 0 and shows that dc/dR < 0. Hence, the direction of the responses
of consumption to increases in x, b, and R are the same as those of money
holdings.

8.8 Cash and Credit Purchases

In practice, while some goods and services must be purchased for cash, others
may be bought on credit. Suppose that c1,t is the consumption of goods that
are only available for cash and c2,t is the consumption of other goods that may
be purchased, at the buyer’s choice, either by cash or by credit. For the cash-
only goods there is a cash-in-advance constraint,m1,t = c1,t . For the goods that
may be purchased using credit, households can either use cash or issue bonds,
which, in effect, is what credit is. If borrowing and lending rates are the same,
then Bt in the household budget constraint becomes the net stock of bonds,
i.e., total bonds less credit. To illustrate, we consider both a CIA and an MIU
setup.

8.8.1 CIA

Suppose that for cash goods a cash-in-advance constraint holds and for credit
goods a credit-in-advance constraint holds, so that M1t = P1tc1t is cash and
M2t = P2tc2t is credit extended in period t at the interest rate Rt . Total
expenditure is

Ptct = P1tc1t + P2tc2t, (8.20)

where P1t and P2t are the prices of cash and credit goods, which are taken as
given, Pt is the general price level, and total consumption is assumed to be

ct = (c1t)α(c2t)1−α

αα(1−α)1−α , (8.21)

which implies a constant elasticity of substitution between cash and credit. The
nominal budget constraint is

∆Bt+1 +∆M1,t+1 + (1+ Rt)M2t + Ptct = Ptxt + RtBt +M2t, (8.22)

where xt is exogenous income. This can be rewritten as

Bt+1 + P1,t+1c1,t+1 + (1+ Rt)P2tc2t = Ptxt + (1+ Rt)Bt. (8.23)

We assume that households maximize
∑∞
s=0 βsU(ct+s), where U(ct) = ln ct ,

with respect to {c1,t+s , c2,t+s , Bt+s+1; s � 0}, subject to the budget constraint
equation (8.23) and the two constraints equations (8.20) and (8.21).
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The Lagrangian can be written as

L =
∞∑
s=0

{βs ln ct+s + λt+s[Pt+sxt+s + (1+ Rt+s)Bt+s
− Bt+s+1 − P1,t+s+1c1,t+s+1 − (1+ Rt+s)P2,t+sc2,t+s]}.

The first-order conditions are

∂L
∂c1,t+s

= βs α
c1,t+s

− λt+s−1P1,t+s = 0, s � 0,

∂L
∂c2,t+s

= βs 1−α
c2,t+s

− λt+s(1+ Rt+s)P2,t+s = 0, s � 0,

∂L
∂Bt+s

= λt+s(1+ Rt+s)− λt+s−1 = 0, s > 0.

It can be shown that the ratio of cash to credit is

M1t

M2t
= P1tc1t

P2tc2t
= α

1−α. (8.24)

From equations (8.20), (8.21), and (8.24) the general price level is

Pt = Pα1tP1−α
2t .

It follows that the total demand for money is

Mt = M1t +M2t = Ptct
= Pα1tP1−α

2t .

Hence, even though it is costly to borrow in this model, this has no effect on
the demand for credit.

8.8.2 MIU

Suppose now that utility depends on real cash balances so that

U(ct,m1t) = ln ct + γ lnm1t.

The budget constraint is now written as

∆Bt+1 +∆M1,t+1 + P1tc1t + (1+ Rt+s)P2tc2t = Ptxt + RtBt.

The Lagrangian is then

L =
∞∑
s=0

{βs[ln ct+s + γ(lnM1,t+s − lnPt+s)]

+ λt+s[Pt+sxt+s + (1+ Rt+s)Bt+s − Bt+s+1 −M1,t+s+1

+M1,t+s − P1,t+sc1,t+s − (1+ Rt+s)P2,t+sc2,t+s]}.
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The first-order conditions are

∂L
∂c1,t+s

= βs α
c1,t+s

− λt+sP1,t+s = 0, s � 0, (8.25)

∂L
∂c2,t+s

= βs 1−α
c2,t+s

− λt+s(1+ Rt+s)P2,t+s = 0, s � 0, (8.26)

∂L
∂M1,t+s

= βs γ
M1,t+s

+ λt+s − λt+s−1 = 0, s > 0, (8.27)

∂L
∂Bt+s

= λt+s(1+ Rt+s)− λt+s−1 = 0, s > 0. (8.28)

It can be shown that
P1tc1t

P2tc2t
= α

1−α(1+ Rt) (8.29)

and so the general price level is

Pt = Pα1tP1−α
2t

1+αRt
(1+ Rt)α . (8.30)

From equations (8.25), (8.27), and (8.28) the demand for cash is

M1t = γα
P1tc1t

Rt
. (8.31)

From equations (8.29) and (8.31) the demand for credit is

M2t = P2tc2t (8.32)

= 1−α
γ

Rt
1+ RtM1t (8.33)

= 1−α
α

P1tc1t

1+ Rt . (8.34)

Hence, an increase in the rate of interest now reduces the demand for both cash
and credit. It is not possible to say which responds the most as this depends
on the particular parameter values.

We have treated credit much like a bond, except that it is issued by house-
holds rather than by government or firms. As an analytical device this is very
convenient. However, it ignores the greater riskiness of lending to households
than of lending to the government due to imperfect information on the credit-
worthiness and default risk of households. To a lesser extent this is also true
of firms, especially new firms. There is a large and growing literature on this
issue that deals with

credit constraints, quantity limits on borrowing;

adverse selection, honest and dishonest borrowers;

moral hazard, borrowers’ behavior is influenced adversely by the terms of the
contract;

monitoring costs, resource costs to lenders due to maintaining vigilance on
borrowers’ ability to repay that are passed to borrowers.
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Figure 8.1. Growth rates of nominal GDP, M0, and M4
in the United Kingdom, 1980–2004.

The general effect of these is to raise the cost of credit above—often consid-
erably above—the risk-free rate of interest, and hence to increase the use of
money in transactions.

For further discussion of the effects of cash and credit purchases on money
demand see Lucas and Stokey (1983, 1987) and Walsh (2005, chapter 7).

8.9 Some Empirical Evidence

What does the evidence reveal about the relation between money and nominal
expenditures? Figures 8.1 and 8.2 are based on U.K. data from 1980 to 2004.
Figure 8.3 is based on U.S. data from 1959 to 2006. M0 is essentially the money
base (outside money that appears in the government budget constraint and
consists largely of notes and coins) and M4 is a broad measure of money that
includes inside money (money provided by the banking system) and outside
money. Currency is notes and coins and M3 is a measure of broad money.

Figure 8.1 shows the rates of growth of nominal GDP, M0, and M4 for the
United Kingdom. It shows that there is no close link in the short run between
money and expenditures. Figures 8.2 and 8.3 show the velocities of circulation
of narrow and broad money for the United Kingdom and the United States. The
definition of velocity Vt is derived from the “quantity theory of money”:

MtVt = Ptyt.
Hence Vt is the value required for the quantity theory to hold. It can be inter-
preted as measuring the number of times each period that a unit of money is
exchanged in transactions. Each type of money will have its own velocity. The
MIU and MIG money-demand functions imply that velocity is a function of the
nominal interest rate.
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Figure 8.2. M0 (solid line) and M4 (dashed line)
velocities in the United Kingdom, 1980–2004.
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Figure 8.3. Currency (solid line) and M3 (dashed line)
velocities in the United Kingdom, 1980–2004.

Figure 8.2 shows that cash or narrow money has behaved very differently
from broad money for the United Kingdom. Whereas M0 (left-hand scale)
increased more slowly than nominal expenditures in the 1980s, M4 (right-hand
scale) has grown faster over the whole period. Figure 8.3, for the United States,
shows that both the currency velocity (left-hand scale) and the M3 velocity
(right-hand scale) have fallen since 1966. The U.K. data show a move away
from using cash for purchases to using credit cards instead. An additional
factor in the growth of M4 is an increase in the use of interest-bearing time
deposits for savings. This evidence offers support for distinguishing between
the demand for transactions balances and for credit when considering the
demand for “money.” In contrast, the U.S. data show that both currency and
broad money have grown faster than nominal expenditures. The growth of
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broad money supports the argument that credit is increasingly important, but
the even faster growth of currency shows the continued importance of cash in
the U.S. economy.

8.10 Hyperinflation and Cagan’s Money-Demand Model

In a situation of hyperinflation the demand for nominal money simplifies con-
siderably. Real variables have hardly any influence on nominal variables due
to their very different rates of growth. Consider the nominal money-demand
function

Mt = PtctR−αt
= Ptct(rt +πt+1)−α.

If consumption and the real interest rate change little, then this can be
approximated by

Mt = φPtπ−αt+1, α > 0. (8.35)

Cagan (1956) proposed a variant of equation (8.35) in which the logarithm of
real-money balances depends only on expected future inflation:

lnMt − pt = −α(Etpt+1 − pt), (8.36)

where pt = lnPt and Etpt+1 is the conditional expectation of pt+1 given infor-
mation available at time t, and, for convenience, we ignore the intercept. If the
money supply is exogenously determined, then, using successive substitution,
pt is obtained by rewriting (8.36) as

pt = α
1+αEtpt+1 + 1

1+α lnMt

= 1
1+α

∞∑
s=0

(
α

1+α
)s
Et lnMt+s , (8.37)

where it is assumed that

lim
n→∞

(
α

1+α
)n
Etpt+n = 0.

If, for example, the money supply grows at the constant rate µ, then

∆ lnMt = µ + εt,
where Etεt+1 = 0. It can then be shown that

lnMt+s = lnMt + µs +
s∑
i=1

εt+i

and hence

Et lnMt+s = lnMt + µs.
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Substituting this into equation (8.37) and simplifying gives

pt = lnMt +αµ.
Taking first differences shows that the expected inflation rate equals the rate
of growth of money:

Etπt+1 = Et lnMt+1 − lnMt = µ.
In a period of hyperinflation the astronomical rate of inflation requires a

correspondingly high rate of growth of the money supply. For example, during
the period of German hyperinflation, between January 1922 and October 1923,
the price level grew by a factor of 192 billion and currency grew by 20.2 billion.
The inflation rate in October 1923 was 29,720% per month. We have also seen
hyperinflation more recently: as previously noted, in the late 1980s to early
1990s in ex-Soviet Union countries, in some South American countries in the
mid 1990s, and more recently in Zimbabwe. Within three or four years all of
these countries were able to reduce inflation to low double-digit numbers at
worst.

As explained in chapter 5, in each case the reason for hyperinflation was the
failure of tax revenues to meet government expenditures. The ex-Soviet Union
countries inherited an inadequate tax base from income and consumption. Until
these taxes could be gathered, and in the absence of large-scale borrowing
facilities from abroad, they were forced to use seigniorage taxation. In other
words, the governments simply printed money to pay for their expenditures.
The reader will be able to determine the outcome in Zimbabwe.

To illustrate the order of magnitude of the inflation rate that is required to
finance government expenditures, suppose that government expenditures are
a proportion α of GDP, tax revenues are sufficient to meet a proportion β of
government expenditures, and the money stock is a proportion γ of private
expenditures. From the government budget constraint seigniorage revenues as
a proportion of GDP must satisfy

π
m
y
= g − T

y
, (8.38)

where y is real GDP, g is real government expenditures, and T is real taxes.
Solving for the inflation rate we obtain

π = (g/y)((g − T)/g)
(m/c)(c/y)

= α(1− β)
γ(1−α),

where α = g/y , β = T/g, γ = m/c, and y = c + g. If, for example, α = 0.5,
β = 0.5, and γ = 0.1, then π ≡ 500%. In a country where government is more
dominant and spends more of GDP so that α = 0.75 and the gap between
government expenditures and tax revenues is much larger, for example β = 0.2,
the required rate of inflation is π ≡ 2400%, a number not dissimilar to the
inflation rates experienced by some ex-Soviet countries.
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8.11 The Optimal Rate of Inflation

In principle, in the longer term, the rate of inflation for an economy is a matter
of government choice. If governments choose the rate of growth of the money
supply, then this will result in the long run in a corresponding rate of inflation.
Alternatively, if governments choose the rate of inflation, then in the long run
this will also be the rate of growth of the money supply. Another option is
available in an open economy as domestic inflation can be tied to the rate of
inflation of another country by keeping the nominal exchange rate with that
country fixed. In practice, there may be considerable difficulties in achieving
such objectives through monetary policy. This is particularly true in the short
run, but far less so in the long run. We discuss these issues in more detail
in chapters 12 and 13. For the moment we assume that inflation is a choice
variable for government and we consider what the optimal rate of inflation
would be. We assume that the government budget constraint can be satisfied
without having to resort to seigniorage taxation and high rates of inflation. First,
we consider the Friedman rule, in which the government chooses an optimal
nominal interest rate. We then consider whether the Friedman rule is optimal,
and what this implies for the optimal rate of inflation.

8.11.1 The Friedman Rule

Friedman (1969) proposed the following (full-liquidity) rule (see also Bailey
1956). Noting that the marginal private return to holding non-interest-bearing
money equals −π (total cost equals πm), while the marginal social cost of pro-
ducing money is virtually zero, Friedman proposed eliminating the private cost
of holding money by setting −π = θ, the rate of time preference, which in our
general equilibrium model is also the long-run real interest rate r . Given that
r is nonnegative, this implies that the optimal rate of inflation, and hence the
optimal rate of growth of nominal money, would be nonpositive. It follows that
the Friedman rule gives a nominal interest rate of R = r +π = 0, i.e., the oppor-
tunity cost of holding nominal balances is zero. In this case, Um, the marginal
utility of money, would also be zero. For this to happen, real-money holdings
would have to reach saturation level. We also note that a nonpositive inflation
rate implies a real yield on money that would be nonnegative and equal to the
return on other assets, including bonds.

A problem with this solution, as pointed out by Phelps (1973), is that it ignores
the government budget constraint and the welfare benefits received by house-
holds arising from the fact that seigniorage taxation allows other taxes to be cut.
A full solution to the optimal rate of inflation requires choosing π subject to
the optimizing decisions of households and the government budget constraint.
In effect, therefore, π is treated as one more tax rate, implying that choosing
the optimal rate of inflation is another problem in optimal taxation.
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8.11.2 General Equilibrium Solution

8.11.2.1 The Household’s Problem

Unlike our previous analysis of optimal taxation, our new model includes
money in the household utility function, and it includes inflation by allow-
ing the general price level to change. We assume that the household util-
ity function is U(ct, lt,mt), where ct is consumption, nt is employment, lt
is leisure (nt + lt = 1), and mt is real-money balances. The exact form
of the utility function is considered below. At this stage we simply assume
that Uc,Ul,Um > 0 and that Ucc,Ull, Umm � 0. Households are assumed
to maximize

∑∞
s=0 βsU(ct+s , lt+s ,mt+s) with respect to {ct+s , lt+s , nt+s , kt+s+1,

bt+s+1,mt+s+1; s � 0} subject to the real budget constraint

ct + kt+1 + (1+πt+1)(kt+1 + bt+1 +mt+1)

= (1− τt)wtnt + (1+ Rk
t )kt + (1+ Rb

t )bt +mt,

where kt is equity, bt is government debt, wt is the average real-wage rate, Rk
t

is the nominal rate of return on equity capital, and Rb
t is the nominal rate of

return on government debt. There are two taxes: labor taxes τt and seigniorage
taxation πt+1mt .

The Lagrangian for this problem can be written as

L =
∞∑
s=0

{βsU(ct+s , lt+s ,mt+s)

+ λt+s[(1− τt+s)wt+snt+s + (1+ Rk
t+s)kt+s + (1+ Rb

t+s)bt+s
+mt+s − ct+s − (1+πt+s+1)(kt+s+1 + bt+s+1 +mt+s+1)]}.

The first-order conditions are

∂L
∂ct+s

= βsUc,t+s − λt+s = 0, s � 0,

∂L
∂nt+s

= −βsUl,t+s + λt+s(1− τt+s)wt+s = 0, s � 0,

∂L
∂kt+s

= λt+s(1+ Rk
t+s)− λt+s−1(1+πt+s+1) = 0, s > 0,

∂L
∂bt+s

= λt+s(1+ Rb
t+s)− λt+s−1(1+πt+s+1) = 0, s > 0,

∂L
∂mt+s

= βsUm,t+s + λt+s − λt+s−1(1+πt+s+1) = 0, s > 0.

From the first-order conditions for consumption and leisure we obtain

Ul,t
Uc,t

= (1− τt)wt. (8.39)

Labor taxes therefore drive a wedge between the ratio of the marginal utilities
and the wage rate. From the first-order conditions for capital and bonds we can
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show that

λt+s−1

λt+s
= 1+ Rk

t+s
1+πt+s+1

= 1+ r k
t+s (8.40)

= 1+ Rb
t+s

1+πt+s+1
= 1+ r b

t+s , (8.41)

implying that the real rates of return on capital and bonds satisfy

r k
t+s = r b

t+s , s > 0. (8.42)

The Euler equation can be obtained from the first-order conditions for
consumption and capital as

βUc,t+1

Uc,t
(1+ r k

t+1) = 1.

Hence, in the long run, β(1+ r k) = 1 or r k = θ = r b.
From the first-order conditions for consumption, bonds, and money,

Um,t+s
Uc,t+s

= Rb
t+s , s > 0. (8.43)

If the Friedman rule holds, then Rb
t+s = 0. This requires that Um,t+s = 0; in other

words, sufficient money must be held to drive its marginal utility to zero.
As nominal rates are zero in the Friedman rule, real rates must satisfy r k =

θ = r b = −π . And since the real rates of return are nonnegative, inflation
must therefore be nonpositive. The next issue is whether the Friedman rule is
optimal.

8.11.2.2 The Optimality of the Friedman Rule

The government is assumed to maximize household utility subject to the econ-
omy’s resource constraint and to the optimality conditions of households
as expressed through the following implementability condition. This imple-
mentability condition is akin to that derived in the analysis of tax policy in chap-
ter 5. Substituting the rates of return for capital and bonds into the household
budget constraint, and using the first-order condition for bonds, we obtain

ct+s + (1+πt+s+1)(kt+s+1+bt+s+1+mt+s+1)

= (1−τt+s)wt+snt+s−(1+Rb
t+s)mt+s+(1+πt+s+1)

λt+s−1

λt+s
(kt+s+bt+s+mt+s).

Provided the transversality conditions

lim
n→∞λt+nkt+n+1 = 0,

lim
n→∞λt+nbt+n+1 = 0,

lim
n→∞λt+nmt+n+1 = 0
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hold, the household budget constraint can be solved forwards to give the
intertemporal household budget constraint

λt−1(kt + bt +mt) =
∞∑
s=0

λt+s[ct+s − (1− τt+s)wt+snt+s + (1+ Rb
t+s)mt+s].

Using the first-order conditions for consumption, work, and money, the inter-
temporal budget constraint can be rewritten as the implementability condition

λt−1(kt + bt +mt) =
∞∑
s=0

βs(Uc,t+sct+s −Ul,t+snt+s +Um,t+smt+s), (8.44)

where the left-hand side is predetermined at time t.
The government budget constraint is

gt + (1+ Rb
t )bt +mt = τtwtnt + (1+πt+1)(bt+1 +mt+1).

The economy’s usual resource constraint can be derived from the household
and government budget constraints as

F(kt,nt) = ct − kt+1 + (1− δ)kt − gt.
If we assume that the production function has constant returns to scale (and
hence is homogeneous of degree one) and that factors are paid their marginal
products, then Fk,t − δ = r k

t and Fn,t = wt . Hence,

F(kt,nt) = Fk,tkt + Fn,tnt
= (r k

t + δ)kt +wtnt.
The resource constraint can therefore be written as

r k
t kt +wtnt = ct + kt+1 − kt + gt.

The government’s problem can now be formulated as that of maximizing the
intertemporal utility of households subject to the implementability condition
and the economy’s resource constraint. The Lagrangian for this problem can be
written as

L =
∞∑
s=0

{βsU(ct+s , lt+s ,mt+s)

+φt+s[r k
t+skt+s +wt+snt+s − ct+s − kt+s+1 + kt+s − gt+s]}

+ µ
[ ∞∑
s=0

βs(Uc,t+sct+sUl,t+snt+s +Um,t+smt+s)− λt−1(kt + bt +mt)
]
.

Or, defining

V(ct+s , nt+s ,mt+s , µ)

= U(ct+s , lt+s ,mt+s)+ µ(Uc,t+sct+s −Ul,t+snt+s +Um,t+smt+s),
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the Lagrangian becomes

L=
∞∑
s=0

{βsV(ct+s , nt+s ,mt+s , µ)

+φt+s[r k
t+skt+s +wt+snt+s − ct+s −kt+s+1+kt+s −gt+s]}−µλt−1(kt +bt).

The first-order conditions for consumption, labor, and capital are

∂L
∂ct+s

= βsVc,t+s −φt+s = 0, s � 0,

∂L
∂nt+s

= βsVn,t+s +φt+swt+s = 0, s � 0,

∂L
∂kt+s

= φt+s(1+ r k
t+s)−φt+s−1 = 0, s > 0,

∂L
∂mt+s

= βsVm,t+s = 0, s > 0.

The first three conditions are the same as before and lead to similar solutions.
We therefore focus on the implications for money. The last condition implies
that

Vm,t+s = (1+ µ)Um,t+s + µ(Ucm,t+sct+s −Ulm,t+snt+s +Umm,t+smt+s) = 0.

The form of the utility function therefore determines the solution. Consider the
separable utility function

U(c, l,m) = c1−σ

1− σ + η
m1−φ

1−φ + z(l).

The first-order condition for money then becomes

η(1+ µ − µφ)m−φ
t+s = 0.

Hence, unless by chance 1+ µ − µφ = 0 or η = 0, for φ > 0 it is necessary that
mt+s → ∞. But the solution to the household’s problem, equation (8.43), gives
Um,t+s/Uc,t+s = Rb

t+s , and so if mt+s → ∞, then Um,t+s → 0. But this can only
happen if Rb

t+s → 0. Thus the Friedman rule would be the optimal policy.
This result may also hold for more general utility functions that are not sep-

arable. The key property that the utility function must possess is that it can be
written in the form

U(c, l,m) = Z[u(c,m), l],
where u(c,m) is a homothetic function so that uc = um (see Chari et al. 1994).
The Friedman rule can also be shown to be optimal when money is an interme-
diate good, as in the shopping-time model (see Correia and Teles 1996; Chari
et al. 1994).

These results have been challenged by Mulligan and Sala-i-Martin (1997). They
argue that the optimality of the Friedman rule depends on taxes not being paid
with money, and on the particular assumptions made about the utility function
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or shopping-time technologies. In particular, they show that optimality depends
on there being no economies of scale to holding money, as there could be in
the shopping-time model. Given its dependence on the form of preferences
and technologies, the conditions required to produce the Friedman rule may
therefore seem rather contrived.

The optimality of the Friedman rule also depends on the absence of mar-
ket imperfections. A negative inflation rate implies that prices must be flexible
downward, whereas, in fact, they are well-known to be sticky, particularly down-
ward. As a result, the deflation of prices is likely to have real costs, which would
not make it an unviable economic policy in practice. Politically, it would almost
certainly be rejected. Hence, in practice, monetary policy is not conducted in
accordance with the Friedman rule in any country, and inflation and nominal
money growth are almost always positive, not negative.

8.12 The Super-Neutrality of Money

The classical dichotomy in macroeconomics is that nominal shocks have no
long-run effect on real variables (see Patinkin 1956; Modigliani 1963; Lucas
1980b; Walsh 2005). When these nominal shocks are money shocks this is
known as the super-neutrality of money. It implies that proportional changes
in nominal money balances, and hence inflation, have no effect on the real
variables in the economy such as consumption, output, and capital. From our
results on the household demand for money and the presence of nominal
money in the household budget constraint, it seems that the existence of nom-
inal money holdings imposes a real cost on the economy, and hence money is
not super-neutral. The problem with this interpretation is that it is based solely
on the decisions of households. These provide only a partial, and not a general,
equilibrium model of the whole economy. To examine the super-neutrality of
money we therefore need to consider a complete model of the economy.

The household budget constraint shows that when inflation is positive, hold-
ing money causes a decline in household financial wealth and this imposes a
real cost on households. Economizing on money balances by taking account of
the loss of interest reduces this loss, but does not eliminate it. Moving from the
partial view of the economy given by the household sector to a complete view
requires that all sectors of the economy are taken into account. In particular,
since seigniorage revenues accrue to government, and a government must also
satisfy its budget constraint, there must be matching effects on government
expenditures or tax revenues.

Consider an economy in which all money is provided by the government,
where seigniorage revenues are returned to households in the form of trans-
fers, and where households take such transfers as given when deciding money
holdings. The household budget constraint can be written as

(1+πt+1)(kt+1 +mt+1)+ ct + Tt = wtnt +mt + (1+ Rt)kt, (8.45)
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where Tt < 0 implies a transfer to households. From the government’s budget
constraint tax revenues are

Tt =mt − (1+πt+1)mt+1. (8.46)

Combining the household and government budget constraints gives the con-
solidated constraint

(1+πt+1)kt+1 + ct = wtnt + (1+ Rt)kt,
in which real-money balances no longer appear.

If the production function is homogeneous of degree one and factors are paid
their marginal products so that Fk,t−δ = rt and Fn,t = wt , then the production
function will satisfy

F(kt,nt) = Fk,tkt + Fn,tnt
= (rt + δ)kt +wtnt. (8.47)

If households have a utility function with real-money balances as an argument
(for example, an MIU function) and they maximize

∑∞
s=0 βsU(ct+s , lt+s ,mt+s)

subject to the household budget constraint and nt+lt = 1, then the Lagrangian
for a centralized economy is

L =
∞∑
s=0

{βsU(ct+s , lt+s ,mt+s)+ λt+s[wt+snt+s +mt+s + (1+ Rt+s)kt+s
− (1+πt+s+1)(kt+s+1 +mt+s+1)− ct+s − Tt+s]}.

The first-order conditions are therefore

∂L
∂ct+s

= βsUc,t+s − λt+s = 0,

∂L
∂nt+s

= −βsUl,t+s + λt+swt+s = 0,

∂L
∂kt+s

= λt+s(1+ Rt+s)− λt+s−1(1+πt+s+1) = 0,

∂L
∂mt+s

= βsUm,t+s + λt+s − λt+s−1(1+πt+s+1) = 0.

We note that since the real rate of return is 1+rt+s = (1+Rt+s)/(1+πt+s+1), the
first three conditions are identical to those obtained in the basic model without
money.

We now examine the long-run solution. From the consumption Euler equation,

βUc,t+1

Uc,t
(1+ rt+s) = 1.

In the long run we obtain r = θ and Um/Uc = R. The long-run level of
consumption can be obtained from the consolidated constraint and is given
by

c = rk+wn.
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Consequently, steady-state consumption is not affected by the level of real-
money holdings. Nor will the long-run levels of capital and labor be affected
either. As a result, if the government returns seigniorage revenues to house-
holds through transfers, then the economy becomes super-neutral with respect
to money.

If the idea of government transferring seigniorage revenues back to house-
holds seems implausible, consider an alternative in which the government first
determines its expenditures and then finances them with a mixture of lump-
sum taxes and seigniorage. The government budget constraint can then be
written as

(1+πt+1)mt+1 + Tt = gt +mt. (8.48)

The household budget stays as before but now with Tt � 0 depending on
whether the government is giving money to households in lump-sum trans-
fers (T < 0) or taking it from them in lump-sum taxes (T > 0). The problem for
the household therefore remains unchanged and so the solution is the same.

The steady-state level of consumption is obtained from equations (8.45),
(8.47), and (8.48) and is given by

c = wn+ rk− g.
Thus, once more, the level of consumption does not depend on the quantity of
real money. In steady state the government budget constraint is

g = T +πm,
implying, other things being equal, that the government is indifferent between
tax and seigniorage finance. And if g = 0 then we revert to the previous for-
mulation. More seigniorage taxation therefore requires less lump-sum taxation
and leaves household after-tax income unaffected by the choice. For any given
real-money-demand function, the choice between seigniorage and lump-sum
taxation may be resolved by predetermining the optimal rate of inflation.

8.13 Conclusions

We have shown how to reformulate the real closed economy to take account of
nominal magnitudes. This involves the introduction of money and the general
price level. In a brief review of the history of money we noted some of the
difficulties that economists have had in providing reasons why money should
exist and how to measure it. The irony is that increasingly the need for such an
explanation is diminishing as the use of credit in some form is replacing cash
holdings, and money is becoming a vehicle for savings.

Historically, the effectiveness of monetary policy has depended on the exis-
tence of a stable demand function for money. We have considered three main
alternative theories of money holding: the CIA model, the MIU (Sidrauski) model,
and the MIG (shopping-time) model. In the first model the demand for money
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is solely for transactions purposes. In the other two theories the demand for
money depends negatively on the nominal interest rate due to households
economizing on money holdings in order to reduce forgone interest earnings.

Because a positive rate of inflation reduces the real value of nominal money
holdings, it may appear from the household budget constraint that this intro-
duces a nonneutrality into our model of the economy, with a nominal variable
affecting real variables even in steady state. We argue that this is a partial, not a
general, equilibrium result as, in full general equilibrium, the government bud-
get constraint implies that other forms of taxation would be lower and would
offset seigniorage taxation, thereby leaving consumption unaffected in the long
run by the quantity of money in the economy. This provides a good example
of why macroeconomics should be treated as a general, and not a partial, equi-
librium subject. We conclude that one way to resolve the choice between using
seigniorage and other forms of taxation is to predetermine the rate of inflation.

We have observed that the demand for cash has been declining over time
and more use is made of credit. We have shown that both cash and credit are
sensitive to the rate of interest when the utility function depends on the cash
balance. But when a cash-in-advance constraint is applied, neither is interest
sensitive.

We have considered the optimal rate of inflation and shown that Friedman’s
optimal inflation rate must be negative due to the requirement that the nominal
interest rate is zero. This would entail that prices fall continuously—a situation
usually associated with deflation and a loss of real output. If there is price and
wage inflexibility, then it will usually be optimal for the rate of inflation to
be positive, though not large. Taken together, these two drawbacks probably
explain why the targeted rate of inflation in nearly all countries is positive, and
not negative.

Monetary policy is increasingly conducted through the use of interest rates
to target inflation rather than a monetary aggregate. This is due to the observed
instabilities in the demand functions for most monetary aggregates that were
caused by the increased use of credit and the holding of savings in the form
of money balances, plus the ease of borrowing against secured assets. This
has generated a new problem for the monetary authorities: namely, to under-
stand the transmission mechanism whereby interest rates affect expenditures
on goods and services. One channel is wealth effects caused by changes in inter-
est rates; another is relative price effects on the costs of borrowing and of capital
caused directly by the changes in interest rates. Later, in chapter 13, we take
up some of these issues again in our discussion of monetary policy.
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Imperfectly Flexible Prices

9.1 Introduction

A key feature distinguishing neoclassical from Keynesian macroeconomics is
the assumed speed of adjustment of prices. Neoclassical macroeconomic mod-
els commonly assume that prices are “perfectly” flexible, i.e., they adjust instan-
taneously to clear goods, labor, and money markets. Keynesian macroeconomic
models assume that prices are sticky, or even fixed, and as a result, at best,
they adjust to clear markets only slowly; at worst, they fail to clear markets
at all, leaving either permanent excess demand (shortages) or excess supply
(unemployment). Such market failures provided the main justification for the
adoption of active fiscal and monetary policies. The aim was to return the econ-
omy to equilibrium (usually interpreted as full employment) faster than would
happen without intervention.

Disillusion with the lack of success of stabilization policy and with the weak
microeconomic foundations of Keynesian models, particularly the assumption
of ad hoc rigidities in nominal prices and wages, which were usually attributed
to institutional factors, led to the development of DGE macroeconomic models,
with their emphasis on strong microfoundations and flexible prices. Instead of
treating the macroeconomy as if it were in a permanent state of disequilibrium
with its behavior being explained by ad hoc assumptions, DGE models initially
returned to examining how the economy would behave if it were able to attain
equilibrium and how the equilibrium characteristics of the economy would be
affected by shocks and by policy changes.

An extensive program of research followed with the aim of investigating
whether the dynamic behavior of the economy could be explained by the prop-
agation of shocks in a flexible-price DGE model, or whether it was necessary
to restore elements of market failure, including price inflexibility, in order to
adequately capture fluctuations in macroeconomic variables over the business
cycle. Early work by Kydland and Prescott (1982) focused on whether the busi-
ness cycle could be explained solely by productivity shocks that were propa-
gated by the internal dynamics of the DGE model to produce serially correlated
movements in output. A discussion of the methodology and findings of this
research program is provided in chapter 14. Although this research caused a
dramatic and far-reaching change in the methodology of macroeconomic analy-
sis, and in the process generated much controversy, the evidence seems to point
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to the need for more price inflexibility in macroeconomic models than is pro-
vided by a perfectly flexible DGE model. As a result, current research has sought
a way to combine the insights obtained from DGE models with a rigorous treat-
ment of price adjustment based on microfounded price theory. The resulting
models are often called New Keynesian models, though they might be better
described as sticky-price DGE models.

These models usually have three key features. First, they retain the assump-
tion of an optimizing framework. Second, they assume that there is imperfect
competition in either goods or labor markets (or both), which gives monopoly
power to producers. This causes higher prices, and lower output and employ-
ment, than under perfect competition. Third, once firms have some control
over their prices, they can choose the rate of adjustment of prices. This allows
the optimal degree of price flexibility for firms to become a strategic, or
endogenous, issue and not an ad hoc additional assumption.

Previously, in our discussion of prices, we focused on the general price level,
not on the prices of individual goods and services or on their relative prices, and
we assumed that the general price level and inflation adjust instantaneously. In
examining imperfect price flexibility, we note that the behaviors of individual
prices differ, with some changing more frequently than others. As a result, the
relative importance of components of the general price level also changes. This
affects the speed of adjustment of both the general price level and inflation,
which are said to be sticky, i.e., to show slow or sluggish adjustment.

A closely related argument is that intermediate outputs are required to pro-
duce the final output, but that the price of the final good is not just a weighted
average of the prices of intermediate goods. The difference between final goods
prices and the average price of intermediate goods represents a resource cost;
the greater the dispersion of prices across intermediate goods, possibly initi-
ated by inflation and prolonged by sticky prices, the greater is the resource
cost. The main interest in this argument is that it suggests that inflation may
be costly, and hence provides a reason for controlling inflation.

We now examine optimal price setting when goods and labor markets are
imperfect but prices are flexible. We then analyze the intermediate-goods
model. Next we consider different models that seek to explain why prices may
not adjust instantaneously but may be sticky. The chapter ends by examin-
ing the implications of these theories for the dynamic behavior of prices and
inflation. Before developing our theoretical models, we consider some evidence
on the speed of adjustment of prices and wages. Two useful surveys on these
issues are Taylor (1999) and Rotemberg and Woodford (1999).

9.2 Some Stylized “Facts” about Prices and Wages

Information comparing the behavior of different U.S. price series has been
obtained by Bils et al. (2003), Bils and Klenow (2004), and Klenow and Kryvs-
tov (2005). They find that the average time between price changes is around
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Figure 9.1. U.K. goods and services price inflation 1989.1–2005.8.

six months, whereas Blinder et al. (1998), using data for a much broader range
of U.S. industries than Klenow and Kryvstov, found the average to be twelve
months and Rumler and Vilmunen (2006) found an average of thirteen months
for countries in the euro area.

The frequency of price changes varies across sectors. Bils, Klenow, and
Kryvtsov, using unpublished data on 350 categories of goods and services col-
lected by the Bureau of Labor Statistics of the U.S. Department of Labor, report
that the median duration between price changes for all items is 4.3 months,
that for goods alone (which comprise 30.4% of the CPI) is 3.2 months, and that
for services (40.8% of the CPI) is 7.8 months. Individual items differ even more.
The median durations between price changes for apparel, food, and home fur-
nishings (37.3%) range between 2.8 and 3.5 months, while for transportation
(15.4%) the figure is 1.9 months, for entertainment (3.6%) it is 10.2 months, and
for medical services (6.2%) it is 14.9 months. A similar distribution is found
by Rumler and Vilmunen for the euro area; there are very frequent changes
for energy products and unprocessed food, and relatively frequent changes for
processed food, nonenergy industrial goods, and, particularly, services.

In the United Kingdom, the time-series evidence on goods and services price
inflation shows very different behavior: see figure 9.1. Services price inflation
has been larger and has fluctuated less in the short term. Goods price inflation
has been very small—recently even negative—and shows greater short-term
variability than services prices. General price inflation is roughly the average of
the two.

The rates of change of nominal-wage rates and the general price level in the
United Kingdom tend to be similar to each other both in level and volatility, but
both the level and the volatility vary considerably over time: see figure 9.2.

More generally, the key stylized “facts” about price and wage changes are the
following.
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Figure 9.2. U.K. price and wage inflation 1959.3–2005.1.

1. Price and wage rigidities are temporary. Hence we expect the DGE model
to work in the longer term.

2. Prices and wages change on average about two or three times a year.

3. The higher inflation is, the more frequently price and wage changes occur.

4. Price and wage changes are not synchronized.

5. Price changes (and to some extent wage changes) occur with different
frequencies in different industries (e.g., food/groceries price changes
are more frequent than those of manufactures, magazines, or services).
Roughly speaking, it seems that changes in the prices of tradeables are
more frequent than those of nontradeables.

6. Prices and costs change at different rates at different stages of the busi-
ness cycle. For example, in the late expansion phase, costs rise more than
prices, implying that profit margins fall.

It is clear from this evidence that prices of individual items behave differ-
ently: their relative prices change over time, their short-term fluctuations are
different, and the frequency with which they change differs. Only for models
of the economy with an implicit time period of about one year is it reasonable
to assume no lag in the adjustment of prices. Even then, lags elsewhere in the
system can delay the completion of price adjustment from one equilibrium to
another.

9.3 Price Setting under Imperfect Competition

Under perfect competition in goods markets, firms (or, more generally, suppli-
ers) have no individual power to set prices as consumers, possessing full infor-
mation, search for the lowest price. Consequently, prices change only when all
firms face the same increase in costs. To be able to set prices, firms require a
degree of monopoly power. This arises under imperfect competition. Prices are
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then a markup over costs. The markup depends on the response of demand to
prices. As a result, prices may also respond to demand factors.

Similar arguments apply to labor markets. When either the employer or the
supplier of labor, whether it be unionized or nonunionized labor, has monopoly
power, labor is not paid its marginal product. Depending on who exercises the
most monopoly power, real wages will be either below (when employers dom-
inate) or above (when employees dominate) the marginal product of labor. We
refer to such discrepancies as wedges. Next we consider some basic results of
pricing in imperfectly competitive goods and factor markets.

9.3.1 Theory of Pricing in Imperfect Competition

In the standard theory of pricing in imperfect competition there is a single firm
which faces a downward-sloping demand for its product:

P = P(Q), P ′(Q) < 0,

where P is the price and Q now represents the quantity produced. The firm’s
production function is

Q = F(X1, . . . , Xn), F ′ > 0, F ′′ � 0,

where Xi is the ith factor input, including raw materials. The cost of production
is

C =
n∑
i=1

WiXi,

where, in order to capture monopoly supply features, the factor prices W are a
nondecreasing function of the quantity of the factor used, so that

Wi = W(Xi), W ′(Xi) > 0.

The firm choosesQ and Xi (i = 1, . . . , n) to maximize profits Π = R−C subject
to the production technology, where R = PQ is total revenue. The Lagrangian
for this problem is

L = P(Q)Q−
n∑
i=1

W(Xi)Xi + λ[F(X1, . . . , Xn)−Q].

The first-order conditions are

∂L
∂Q

= P + P ′(Q)Q− λ = 0,

∂L
∂Xi

= −Wi −W ′(Xi)Xi + λF ′i = 0.

Hence,

λ = P + P ′(Q)Q = MR

= Wi +W
′(Xi)Xi
F ′i

= MCi
MPi

= MC,
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where MR is marginal revenue, MCi is the marginal cost, and MPi the marginal
product of the ith factor, and where

MC = ∂C
∂Q

= ∂C
∂Xi

∂Xi
∂Q

is total marginal cost. It follows that

p = 1
1− (1/εD)MC (9.1)

= 1
1− (1/εD)

MCi
MPi

(9.2)

= 1+ (1/εXi)
1− (1/εD)

Wi
MPi

, (9.3)

where

εD = −∂Q∂P
P
Q
> 0

is the price elasticity of demand and

εXi =
∂Xi
∂W

W
Xi
> 0

is the factor supply elasticity. The labor-supply elasticity may reflect the monop-
sony power of unionized labor as well as the labor supply of an individual.
Hence the price of goods and services is dependent on the unit costs of the fac-
tors, their marginal product, the elasticity of their supply, and on the elasticity
of demand for the good.

For the Cobb–Douglas production function

Q =
n∏
i=1

Xαii ,
n∑
i=1

αi = 1,

we can obtain the share going to the ith factor, which is

wiXi
pq

= αi 1− (1/εD)
1+ (1/εXi)

.

The first-order conditions imply that MCi/MPi is equal for each factor. It fol-
lows that an increase in the unit cost of a single factor would result in a decrease
in its use and hence an increase in its marginal product. If εXi is constant, then
Wi/MPi, and hence MCi/MPi, will remain unchanged. As a result, the price of
goods would be unaffected; because this is a relative price change, only the
factor proportions have altered. In contrast, if a factor is required in fixed pro-
portion to output, then substitutability between factors is not possible. In this
case its marginal product is fixed and so marginal cost, and hence the price of
the good, will increase. Output will fall, which will reduce the demand for all
factors. This analysis applies to the medium and to the long run; in the short
run all factors will tend to be less flexible. Consequently, the case of fixed pro-
portions may also be a good approximation to the short-run response of an
increase in the price of a factor.
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If all factor prices increase in the same proportion, and their supply elastic-
ities and the price elasticity of demand are constant, then the prices of goods
would increase by the same proportion. Accordingly, with constant elasticities,
inflation must be due to a general increase in factor prices. We have argued
that relative factor price changes would have no effect on prices in the long
run; they would only affect relative factor usage. However, they may affect the
general price level in the short run.

These elementary principles of pricing are the basis of New Keynesian mod-
els of inflation. They underpin the supply side of the economy through new
theories of the Phillips curve—a relation between price or wage inflation and a
measure of excess supply in the goods or labor market, such as the deviation
of output from full capacity (or from trend output) or unemployment. For fur-
ther discussion of the role of marginal cost pricing and the output gap in the
New Keynesian inflation equation see Neiss and Nelson (2002) and Batini et al.
(2005).

9.3.2 Price Determination in the Macroeconomy with
Imperfect Competition

Modern macroeconomic theories of price determination emphasize the fact that
in the economy a large number of different goods and services are produced. A
widely used model of price setting when these goods are imperfect substitutes
is that of Dixit and Stiglitz (1977). We consider a variant of this that is closely
related to work by Blanchard and Kiyotaki (1987), Ball and Romer (1991), and
Dixon and Rankin (1994). For simplicity, the model is highly stylized.

We assume that the economy is composed ofN firms each producing a differ-
ent good that is an imperfect substitute for the other goods, and that a single
factor of production is used, namely, labor that is supplied by N households.
The production function for the ith firm is assumed to be

yt(i) = Fi[nt(i)],
wherent(i) is the labor input of the ith firm. The production function is indexed
by i to denote that each good may be produced with a different production
function. The profits of the ith firm are

Πt(i) = Pt(i)Fi[nt(i)]−Wt(i)nt(i), (9.4)

where Pt(i) is the output price and Wt(i) is the wage rate paid by firm i.

9.3.2.1 Households

We assume that there are also N households and these are classified by their
type of employment, with each household working for one type of firm i.
Households are assumed to have an identical instantaneous utility function:

U[ct, lt(i)] = u[ct]+ ηlt(i)ε, ε � 1,
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where ct is their total consumption, lt(i) is leisure, and nt(i) + lt(i) = 1. We
assume that uc > 0 and that ucc < 0.

We also assume that total consumption ct is obtained by aggregating over
the N different types of goods and services ct(i) using the constant elasticity
of substitution function

ct =
[ N∑
i=1

ct(i)(φ−1)/φ
]φ/(φ−1)

, (9.5)

where φ > 1 is the elasticity of substitution; we recall that a higher value
of φ implies greater substitutability. Thus goods and services are imperfect
substitutes if φ is finite.

Total household expenditure on goods and services is

Ptct =
N∑
i=1

Pt(i)ct(i);

hence the general price index Pt satisfies

Pt =
N∑
i=1

Pt(i)
ct(i)
ct
. (9.6)

The household budget constraint is

Ptct =
N∑
i=1

Pt(i)ct(i) = Wt(i)nt(i)+
N∑
i=1

Πt(i),

where each household is assumed to hold an equal share in each firm.
In the absence of capital (and trading in shares) the budget constraint is static.

Consequently, optimization can be carried out each period without regard to
future periods. Thus, in the absence of assets, the intertemporal aspect of the
DGE model of the model is eliminated. We assume, therefore, that households
maximize utility with respect to {ct(1), . . . , ct(N), nt(i)} subject to their budget
constraint and to nt(i)+ lt(i) = 1. The Lagrangian is defined as

L = u
([ N∑

i=1

ct(i)(φ−1)/φ
]φ/(φ−1))

+ ηlt(i)ε

+ λt
[
Wt(i)nt(i)+

N∑
i=1

Πt(i)−
N∑
i=1

Pt(i)ct(i)
]
.

The first-order conditions are

∂L
∂ct(i)

= uc,t
[
ct
ct(i)

]1/φ
− λtPt(i) = 0, i = 1, . . . , N,

∂L
∂lt(i)

= ηεlt(i)ε−1 − λtWt(i) = 0,

giving
ct(i)
ct

=
[
λtPt(i)
uc,t

]−φ
. (9.7)
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The household’s problem can also be expressed in terms of maximizing utility
with respect to aggregate consumption, as the Lagrangian can be rewritten as

L = u(ct)+ ηlt(i)ε + λt
[
Wt(i)nt(i)+

N∑
i=1

Πt(i)− Ptct
]
.

The first-order condition with respect to ct is

∂L
∂ct

= uc,t − λtPt = 0;

hence uc,t/Pt = λt and so equation (9.7) can also be written as

ct(i)
ct

=
[
Pt(i)
Pt

]−φ
. (9.8)

This is the demand function for the ith good.
Substituting (9.8) into (9.6) gives the general price index expressed solely in

terms of individual prices:

Pt =
n∑
i=1

Pt(i)
[
Pt(i)
Pt

]−φ

=
[ n∑
i=1

Pt(i)1−φ
]1/(1−φ)

. (9.9)

From the first-order condition with respect to labor, the total supply of labor
by the household is

lt(i) =
(uc,tWt(i)

ηεPt

)1/(ε−1)
. (9.10)

As ε � 1, an increase in Wt(i) will raise labor supply lt(i). If labor markets are
competitive, households have the same utility function (implying complete mar-
kets) and work equally hard (implying firms are indifferent about who they hire),
in which case Wt(i) will be equal across firms. We denote the common wage by
Wt . If households have different utility functions (or do not work equally hard),
then the marginal utilities will differ and so will wages.

9.3.2.2 Firms

The problem for the ith firm is to maximize profits subject to its demand func-
tion, equation (9.8). In the absence of investment and government expendi-
tures, we have ct(i) = yt(i) = Fi[nt(i)]. The first-order condition of Πt(i),
equation (9.4), with respect to ct(i) is

dΠt(i)
dct(i)

= Pt(i)+ ∂Pt(i)∂ct(i)
ct(i)−Wt dnt(i)

dct(i)
= 0,

where
dct(i)
dnt(i)

= dyt(i)
dnt(i)

= F ′i [nt(i)].
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This implies that

Pt(i) = φ
φ− 1

Wt
F ′i [nt(i)]

. (9.11)

This is a key result. It implies that price is a markup over Wt/F ′i , which is the
marginal cost of an extra unit of output; the markup or wedge isφ/(φ−1) > 1.
As φ → ∞, i.e., as the consumption goods become perfect substitutes, the
markup tends to unity and price falls to equal marginal cost. This solution is the
standard outcome for monopoly pricing. Prices vary across goods due to differ-
ences in the marginal product of labor, F ′i [nt(i)]. Equation (9.11) implies that
firms have some control over their prices. This entails a source of inefficiency
because output, and hence consumption, are lower than in perfect competition.
An increase in the economy-wide wage would therefore cause an increase in the
price of each good and in the general price level.

The demand for labor can be obtained from equation (9.11). Suppose that the
production function is Cobb–Douglas so that

yt(i) = Aitnt(i)αi , αi � 1,

where Ait can be interpreted as an efficiency term for the ith firm at time t.
Labor demand is then given by

nt(i) =
(

φ
αiAit(φ− 1)

Wt
Pt(i)

)−1/(1−αi)
. (9.12)

The greater φ is, and hence the lower the markup, the greater labor demand
and output are, reflecting once more the inefficiency of monopolies in terms of
lost output and employment.

Equating labor demand and supply (equations (9.10) and (9.12)) for firm i
gives

nt(i) =
(

φ
αiAit(φ− 1)

Wt
Pt(i)

)−1/(1−αi)
=
(uc,tWt
ηεPt

)1/(ε−1)
.

Hence
Pt(i)
Pt

= φ
αiAit(φ− 1)

(uc,t
ηε

)(1−αi)/(ε−1)(Wt
Pt

)(ε−αi)/(ε−1)
. (9.13)

Thus differences between firm prices are due to Ait and αi. Equation (9.13)
implies that, as ε � 1, an increase in the economy-wide real-wage rate would
raise the relative price of firm i.

In the special case where the efficiency term Ait and the production elastici-
ties are the same, so that Ait = At and αi = α, firm prices will be identical. In
this case we can solve equation (9.13) for the real wage as

Wt
Pt
=
(

φ
αAt(φ− 1)

)−(ε−1)/(ε−α)(uc,t
ηε

)−(1−α)/(ε−α)
. (9.14)

As uc,t is negatively related to ct (= yt) and ε > α, an increase in the real wage
will raise output. Moreover, the lower the markup φ/(φ− 1) is, the greater the
response of output to the real wage will be. Equation (9.14) also shows that the
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economy is then neutral with respect to nominal values. An example of this
is when each production function is linear in labor when αi = 1. In this case
employment is determined by the supply side (equation (9.10)).

More generally, when theαi are different, we do not obtain a closed-form solu-
tion for the real wage. To see this, substitute equation (9.13) into (9.9). An ana-
lytic solution for the general price level cannot be derived and hence total out-
put is not a function of the real wage. Nonetheless, the economy remains neutral
with respect to a nominal shock. This can be seen by noting that equation (9.13)
is still homogeneous of degree zero in wages and prices.

9.3.3 Pricing with Intermediate Goods

Once more our model of the economy is highly stylized for simplicity. The key
assumption is that a final good is produced by a profit-maximizing firm usingN
inputs that are all intermediate goods. It is assumed that the intermediate goods
are produced by N monopolistically competitive firms using only one factor of
production: labor. Households consume only the final good and supply labor.

9.3.3.1 Final-Goods Production

The final good is yt and the intermediate goods are yt(i), i = 1, . . . , N . It is
assumed that the final output satisfies the CES production function

yt =
[ N∑
i=1

yt(i)(φ−1)/φ
]φ/(φ−1)

, φ > 1,

and that there are no other factors of production for final output.
The final-output producer is assumed to choose the inputs yt(i) to maximize

profits, which are given by

Πt = Ptyt −
N∑
i=1

Pt(i)yt(i)

= Pt
[ N∑
i=1

yt(i)(φ−1)/φ
]φ/(φ−1)

−
N∑
i=1

Pt(i)yt(i),

where Pt is the price of the final output and Pt(i) are the prices of the
intermediate inputs. The first-order condition is

∂Πt
∂yt(i)

= Pt
(
yt
yt(i)

)1/φ
− Pt(i) = 0;

hence the demand for the ith input is

yt(i) =
(
Pt(i)
Pt

)−φ
yt. (9.15)
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Since equilibrium profits are zero, the price of the final good is

Pt =
N∑
i=1

Pt(i)
yt(i)
yt

=
[ N∑
i=1

Pt(i)1−φ
]1/(1−φ)

.

9.3.3.2 Intermediate-Goods Production

The intermediate goods are assumed to be produced with the constant returns
to scale production function

yt(i) = Aint(i),
where nt(i) is labor input. Intermediate-goods firms maximize the profit func-
tion

Πt(i) = Pt(i)yt(i)−Wtnt(i)
subject to the demand function, equation (9.15), whereWt is the economy-wide
wage rate. The profit function can therefore be written as

Πt(i) = Pt
(
yt
yt(i)

)1/φ
yt(i)−Wtnt(i)

= Pty1/φ
t yt(i)1−(1/φ) −Wtnt(i)

= Pty1/φ
t [Aint(i)]1−(1/φ) −Wtnt(i).

Maximizing Πt(i) with respect to nt(i), taking Pt and yt as given, yields

nt(i) = Aφ−1
i

[
φ− 1
φ

Pt
Wt

]1/φ
yt,

yt(i) = Aφi
[
φ− 1
φ

Pt
Wt

]1/φ
yt,

Pt(i) = φ
Ai(φ− 1)

Wt.

9.3.3.3 The Inefficiency Loss

Total output is derived from the outputs of the intermediate goods as

yt(i) = Aint(i) =
[
Pt(i)
Pt

]−φ
yt.

Total labor is given by

nt =
N∑
i=1

nt(i)

=
N∑
i=1

1
Ai

[
Pt(i)
Pt

]−φ
yt.
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This gives a relation between the output of the final good and aggregate labor,
which can be written as

yt = vtnt,
vt = 1∑N

i=1(1/Ai)[Pt(i)/Pt]−φ
.

If vt < 1, then there is an inefficiency loss in the use of labor in producing
the final output but not in producing intermediate outputs. Or, put another
way, since it is necessary to use intermediate inputs to produce final output, an
inefficiency loss occurs in the use of labor in the economy. Moreover, if Ai = 1,
then the inefficiency loss is due solely to price dispersion as we can then express
vt as

vt =
[
P̃t
Pt

]φ
,

P̃t =
[ N∑
i=1

Pt(i)−φ
]−1/φ

,

Pt =
[ N∑
i=1

Pt(i)1−φ
]1/(1−φ)

.

This implies that vt < 1.
To see the effect of inflation, totally differentiate Pt to obtain

dP−φt =
N∑
i=1

dPt(i)−φ.

Hence, the general level of inflation is related to individual intermediate-goods
inflation rates through

dPt
Pt

=
{ N∑
i=1

[
dPt(i)
Pt(i)

Pt(i)
Pt

]−φ}−1/φ
.

Suppose that dPt(i) is the same for all i, then dPt < dPt(i). This implies that if
Pt(i)/Pt is the same for i, then

dPt
Pt
<

dPt(i)
Pt(i)

,

and so the overall level of inflation for the economy is less than the com-
mon individual inflation rate. The presence of intermediate goods therefore
ameliorates general inflation.

Putting the two results together, we conclude that the presence of intermedi-
ate goods leads to an output loss but also a lower level of inflation for the final
good.
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9.3.4 Pricing in the Open Economy: Local and Producer Currency Pricing

Previously, in our discussion of the open economy in chapter 8, we discussed
imperfect substitutability between domestic and foreign tradeables. We argued
that when they are perfect substitutes, after taking account of transportation
costs, the law of one price holds. In other words, there is a single world price
for tradeables, which may be expressed in foreign currency, typically the U.S.
dollar, or in terms of domestic currency. This relation implies that PH

t = PF
t =

StPF∗
t = StPH∗

t , where we are using the notation of chapter 7, i.e., that PH
t is

the domestic currency price of home tradeables, PF
t is the domestic currency

price of imports, St is the domestic price of foreign exchange, and an asterisk
denotes the foreign equivalent. Not only does this prevent domestic producers
from being able to pass on increases in costs that are purely domestic, it also
affects the response of prices to changes in the nominal exchange rate, and
hence the effectiveness of monetary policy.

Since for a small economy the prices of domestic tradeables are set at the
world price, and the world price is given in foreign currency terms, an exchange-
rate depreciation—which raises the number of units of domestic currency per
unit of foreign currency—would raise the domestic currency price of imports,
and hence cause an increase in the price of domestic tradeables sold at home.
The foreign currency price of home-country exports would be unaffected as
this is set in terms of the world currency price, which is taken as given. Exports
therefore become more profitable in terms of domestic currency. An exchange-
rate appreciation would reduce the domestic currency price of imports and
hence domestic tradeables prices. As the foreign currency price of exports
is unchanged, the domestic currency price will decrease; therefore exporting
becomes less profitable.

If, instead, domestic and foreign tradeables are imperfect substitutes, then
domestic and foreign producers have a measure of monopoly power in setting
prices. A situation where producers have monopoly power both at home and
abroad has been named producer-currency-pricing (PCP) by Betts and Devereux
(1996) and Devereux (1997). A situation where producers have monopoly power
at home, but not abroad, has been named local-currency-pricing (LCP). In this
case imports are priced at the domestic producer price; this is known as pricing-
to-market.

Consider PCP. In the extreme case of a pure monopoly, the export price is just
the domestic currency price expressed in foreign currency, but domestic and
foreign tradeables will differ in price. In this case, PF

t = StPH∗
t and PF∗

t = S−1
t P

H
t

but PH
t ≠ P

F
t and PH∗

t ≠ PF∗
t . Domestic producers can now pass on cost increases

both at home and abroad, and an exchange-rate appreciation would result in
an increase in the foreign currency price of exports. If the foreign producer has
monopoly power in the domestic market, then a depreciation would raise the
domestic currency price of imports.

In contrast, under pure LCP, PH
t = PF

t and PH∗
t = PF∗

t but PF
t ≠ StP

H∗
t and PF∗

t ≠
S−1
t P

H
t . Here the domestic producer would be able to pass on cost increases only
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in the domestic market and not in the foreign market. An appreciation would
have no effect on the foreign currency price of exports, and a depreciation
would not affect domestic tradeables prices.

The evidence shows that import prices are relatively sticky and do not fluc-
tuate one-for-one with changes in the nominal exchange rate, or with changes
in foreign prices. It is the terms of trade and the real exchange rate that seems
to absorb shocks, especially those to the nominal exchange rate. Engel (2000),
among others, has found that traded goods prices in Europe are not much
influenced by exchange-rate movements. This seems to suggest that either for-
eign goods are highly substitutable with home goods or they may not be per-
fect substitutes, but because producers lack monopoly power in foreign mar-
kets, the prices of imported goods are priced-to-market, i.e., LCP prevails. This
finding has important policy consequences. It implies that a depreciation of
the exchange rate tends not to be passed on in the form of higher prices for
imported goods. This considerably reduces the effectiveness of an exchange-
rate depreciation, a traditional way to stimulate the domestic economy and
improve the trade balance.

These arguments apply primarily to a small open economy and are less
applicable to the United States, which is a large and relatively closed econ-
omy compared with nearly all other countries. By virtue of its size, the U.S.
price will often be the principal determinant of the world price. And because
world prices are often set in terms of the U.S. dollar, U.S. domestic prices are
well-insulated against changes in the value of the dollar. As a result, to a first
approximation, it is common to treat the United States as a closed economy.
However, this would miss a crucial aspect of the U.S. economy. To the extent
that the world prices of commodities are set in dollars, it would be more dif-
ficult for the United States to improve its competitiveness through a depreci-
ation. Instead, it would have to rely on improvements to productive efficiency
through technological growth and innovation in new products, which would
create, at least for a time, monopoly power in world markets. Thus, in this case,
the arguments above concerning pricing under imperfect competition apply to
the United States, but those relating to the effect of exchange-rate changes on
prices may be less relevant. Like other countries, of course, the United States
also exports commodities, whose foreign currency price would fall following a
dollar depreciation.

9.4 Price Stickiness

We have discussed how optimal prices are determined in the long run. We now
consider the dynamic behavior of prices in the short run. This will give us a
complete picture of pricing behavior. There are several competing theories of
price dynamics adjustment, but they have similar implications for price dynam-
ics. These theories have in common the notion that the general price level is
made up of the prices of many individual items, and that the prices of these
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components adjust at different speeds. Over time the prices of individual items
are revised. As a result, the general price level displays inertia. The key distin-
guishing feature of these theories lies in whether they attribute price changes
to chance or to choice: i.e., whether the changes are exogenous or endogenous,
optimal or constrained, and hence suboptimal.

We focus on three theories commonly used in modern macroeconomics:

1. The overlapping contracts model of Taylor (1979), where wages are the
main cause of price change.

2. The staggered pricing model of Calvo (1983), where price changes occur
randomly.

3. The optimal dynamic adjustment model used, for example, by Rotemberg
(1982), where the speed of price adjustment is chosen optimally.

We then consider the implications for price dynamics.

9.4.1 Taylor Model of Overlapping Contracts

This model is based on the following assumptions.

1. Price is a markup over marginal cost and the markup may be time-varying
and affected in the short-run mainly by the wage rate.

2. The wage rate at any point in time is an average of wage contracts that
were set in the past but are still in force and of those set in the current
period.

3. When they were first set, wage contracts were profit maximizing and
reflected the prevailing marginal product of labor and the expected future
price level.

We define the following variables: Pt is the general price level, pt = lnPt ,
πt = ∆pt is the inflation rate, Wt is the economy-wide wage rate, wt = lnWt ,
WN
t is the new wage contract made in period t, wN

t = lnWN
t , vt is the price

markup over costs, and zt is the logarithm of the marginal product of labor.
Price is assumed to be a markup over wage costs:

pt = wt + vt. (9.16)

This implies a degree of monopoly power and a single factor, labor. Taylor
assumed that wage contracts last for four quarters. For simplicity, we assume
that they last for only two periods. The average wagewt is the geometric mean
of the wage contracts wN

t and wN
t−1 made in periods t and t − 1:

wt = 1
2(w

N
t +wN

t−1). (9.17)

New wage contracts are assumed to be set to take account of the possibility
that the future price level pt+1 might differ from the current level pt ; hence
the real wage, defined by taking the average of the current and future expected
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price levels over two periods, equals the current marginal product of labor zt .
The new nominal wage is therefore

wN
t − 1

2(pt + Etpt+1) = zt. (9.18)

Combining equations (9.16), (9.17), and (9.18) gives

pt = 1
2{[1

2(pt + Etpt+1)+ zt]+ [1
2(pt−1 + Et−1pt)+ zt−1]} + vt.

Consequently, the price level depends on past prices as well as future expected
prices. The rate of inflation implied by this equation is

∆pt = Et∆pt+1 + 2(zt + zt−1)+ 4vt + ηt.
And if expectations are rational so that

ηt = −(pt − Et−1pt)

with Et−1ηt = 0, then the inflation rate is given by

πt = Etπt+1 + 2(zt + zt−1)+ 4vt + ηt. (9.19)

This has the forward-looking solution

πt = Et
∞∑
s=0

4(zt+s + vt+s)+ 2zt−1 + ηt. (9.20)

Hence, following a temporary unit increase in log marginal productivity zt , infla-
tion increases in period t by 4 units and in period t+1 by 2 units before return-
ing to its initial level in period t+2. Equation (9.20) also implies that, following
a permanent increase to zt , inflation instantly increases without bound, which
is implausible. The model only makes sense, therefore, if the long-run level of
zt is constrained to be zero but may temporarily depart from this. In this case,
the steady-state level of inflation is equal to the logarithm of the markup.

Assuming that wage contracts last longer than n periods results in a price
equation of the form

pt =
n−1∑
s=1

αsEtpt+s +
n∑
s=1

βspt−s + 1
n

n−1∑
s=0

zt−s + νt + ξt,

where ξt is a linear combination of innovations in price; hence ξt is serially
correlated. For each additional period there is an extra forward-looking and
lagged price term and an additional lag in productivity.

9.4.2 The Calvo Model of Staggered Price Adjustment

This is perhaps the most popular pricing model as it offers a simple way to
derive a theory of dynamic behavior of the general price level while starting
from a disaggregated theory of prices. The general price level is the average
price of all firms. It is assumed that firms are forward looking and they fore-
cast what the optimal price p∗t+s (s � 0), which is the same for all firms, should
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be both in the future and in the current period. The crucial distinguishing fea-
tures of Calvo pricing are that not all firms are able to adjust to the optimal
price immediately and that adjustment, when it does occur, is exogenous to the
firm and happens randomly. It is assumed that in any period there is a given
probability ρ of a firm being able to make an adjustment to its price. Conse-
quently, (1− ρ)s is the probability that in period t + s the price is still pt . The
drawback of this theory, therefore, is the restriction that firms have no control
over when they can adjust their price.

When firms do adjust their price they set it to minimize the present value of
the cost of deviations of the newly adjusted price p#

t from the optimal price.
As soon as the adjustment takes place, this cost is zero both for the period of
adjustment and for future periods. Thus the aim is to choose p#

t to minimize

1
2

∞∑
s=0

γsEt[p#
t − p∗t+s]2,

where γ = β(1− ρ).
Differentiating with respect to p#

t gives the first-order condition

∞∑
s=0

γsEt[p#
t − p∗t+s] = 0.

Hence, after adjustment, the new price is

p#
t = (1− γ)

∞∑
s=0

γsEtp∗t+s . (9.21)

This can also be written as the recursion

p#
t = (1− γ)p∗t + γEtp#

t+1.

Consequently, like the Taylor model, the solution is forward looking.
Since the general price level is the average of all prices, and a proportion ρ

of firms adjust their price in period t, the actual price level pt is a weighted
average of firms that are able to adjust and those that are not. Thus

pt = ρp#
t + (1− ρ)pt−1. (9.22)

Eliminating p#
t using equation (9.21) gives

pt = ρ(1− γ)
∞∑
0

γsEtp∗t+s + (1− ρ)pt−1.

Hence inflation is given by

πt = ρ(1− γ)
∞∑
0

γsEt[p∗t+s − pt+s−1],

or, expressed as a recursion, it is given by

πt = ρ(1− γ)(p∗t − pt−1)+ γEtπt+1. (9.23)
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Once again, therefore, we obtain a forward-looking solution for inflation. At
time t, equation (9.23) shows that the actual change in price is related to the
“desired” change in price p∗t −pt−1 and to the expected future change in price.
In steady state the actual price level equals the desired level and inflation is
zero.

A modification of the basic Calvo model assumes that, if firms cannot reset
their prices optimally, then they index their current price change to the past
inflation rate. As a result, equation (9.22) is replaced by

pt = ρp#
t + (1− ρ)(πt−1 + pt−1)

= ρp#
t + (1− ρ)(2pt−1 − pt−1).

The auxiliary equation is

A(L) = 1− 2(1− ρ)L+ (1− ρ)L2 = 0,

where L is the lag operator. As A(1) = ρ > 0 and the coefficient of L2 is less
than unity, both roots lie outside the unit circle and so the equation is stable.
The solution may therefore be written as

πt = ρ(p#
t − pt−1)+ (1− ρ)πt−1.

The inflation equation is then

πt = ρ(1− γ)
1+ ρ(1− γ)(p

∗
t − pt−1)+ γ

ρ(1− γ)Etπt+1 + 1− ρ
ρ(1− γ)πt−1.

Hence, there is an additional term in πt−1 on the right-hand side of the inflation
equation, which implies that inflation takes time to adjust, and the coefficients
of the other terms are different.

9.4.3 Optimal Dynamic Adjustment

We assume that firms trade off two types of distortion. One arises because
changing prices is costly. The other is the cost of being out of equilibrium. The
trade-off is expressed in terms of an intertemporal cost function involving the
change in the logarithm of the price level, ∆pt , and deviations of the price level
from its optimal long-run price p∗t . The resulting intertemporal cost function
is

Ct =
∞∑
s=0

βsEt[α(p∗t+s − pt+s)2 + (∆pt+s)2].

The first term is the cost of being out of long-run equilibrium and the second is
the cost of changing the price level. Firms seek to minimize the present value
of these costs by a suitable choice of the current price pt . The solution is the
optimal short-run price level, as opposed to the optimal, or equilibrium, long-
run price level.

The first-order condition is

∂Ct
∂pt+s

= 2Et[βs{−α(p∗t+s − pt+s)+∆pt+s} − βs+1∆pt+s+1] = 0.
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For s = 0, this implies that

∆pt = α(p∗t − pt)+ βEt∆pt+1 (9.24)

or

πt = α
1+α(p

∗
t − pt−1)+ β

1+αEtπt+1. (9.25)

Once more we have a forward-looking equation for inflation with πt depending
on the desired change in the price level and on Etπt+1. The greater α, the rela-
tive cost of being out of equilibrium, is, the larger the coefficient on “desired”
inflation π∗t = p∗t − pt−1 is; the greater the discount factor β is, the larger
the coefficient of future expected inflation is. In steady state, p∗t = pt and
πt = Etπt+1.

A variant of the optimal dynamic adjustment model that results inπt−1 being
an additional variable is obtained by assuming that only a fraction λ of firms set
their prices in this way and that the rest, 1−λ, set prices using a rule of thumb
based on the previous period’s inflation. The resulting inflation equation is

πt = λ β
1+αEtπt+1 + λ α

1+α(p
∗
t − pt−1)+ (1− λ)πt−1.

In this way inflation takes time to adjust. An alternative way of adding lagged
inflation terms is to include additional terms in the cost function. For example,
if it is costly to change the inflation rate, then a term in (∆pt)s , s � 3, can
be added. For s = 3 the lag in inflation becomes an extra variable in the price
equation.

9.4.4 Price Level Dynamics

The Calvo model and the optimal dynamic adjustment model have the same
form—only the interpretation of the coefficients differs. The Taylor model has
a similar dynamic structure but a different coefficient on expected future infla-
tion. We have seen that additional dynamics can be added to the Taylor model
by extending the contract period; extra lags can be added to the Calvo model
by assuming that firms who are unable to adjust prices optimally index on past
inflation; extra lags to the optimal dynamic adjustment model may also be gen-
erated by assuming that firms set prices using a rule of thumb or by adding
terms to the cost function.

A general formulation of the price equation that captures all three theories
is

πt = απ∗t + βEtπt+1, |β| � 1, (9.26)

where πt = ∆pt and π∗t = p∗t − pt−1. At first sight, this equation may seem
to imply that there is no price stickiness, because it has the forward-looking
solution

πt = α
∞∑
s=0

βsEtπ∗t+s .



�

�

“wickens” — 2007/10/15 — 13:08 — page 227 — #245
�

�

�

�

�

�

9.4. Price Stickiness 227

If we rewrite the model in terms of the price level, however, then we obtain

∆pt = α(p∗t − pt−1)+ βEt∆pt+1, (9.27)

or, in terms of the price level,

−βEtpt+1 + (1+ β)pt − (1−α)pt−1 = αp∗t , (9.28)

which is a second-order difference equation.
Using the lag operator, this can be written as

−A(L)L−1pt = αp∗t .

The auxiliary equation associated with equation (9.28) is

A(L) = β− (1+ β)L+ (1−α)L2 = 0.

As A(1) = −α < 0, the solution is a saddlepath. If the roots are denominated
|λ1| � 1, |λ2| < 1, then the solution can be written as (see the mathematical
appendix)

(1−α)λ1

(
1− 1

λ1
L
)
(1− λ2L−1)pt = αp∗t

or as the partial adjustment model

∆pt =
(

1− 1
λ1

)
(p#
t − pt−1), (9.29)

p#
t =

α
(1−α)(λ1 − 1)

∞∑
s=0

λs2Etp
∗
t+s . (9.30)

If expectations are static, so that Etp∗t+s = p∗t , then

p#
t =

α
(1−α)(λ1 − 1)(1− λ2)

p∗t = p∗t .

Equations (9.29) and (9.30) show that, following a temporary or permanent dis-
turbance to equilibrium, the adjustment of the price level takes time. In other
words, prices are sticky.

For prices to be perfectly flexible—and price adjustment instantaneous—we
require that λ1 = 1, implying that λ2 = β/(1−α). If we rewrite equation (9.27)
as

∆pt = α
1−α(p

∗
t − pt)+

β
1−αEt∆pt+1, (9.31)

then it is clear that this requires that α = 1. Translated in terms of the parame-
ters of the Calvo model, we require that ρ = 0, and in the terms of the optimal
dynamic adjustment model we require that α = ∞.
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9.4.4.1 Long-Run Equilibrium

In long-run equilibrium we expect that the solution for the price level ispt = p∗t .
But equation (9.31) does not have this solution unless either the long-run rate
of inflation is zero or β/(1−α) = 1. If β/(1−α) ≠ 1, and long-run inflation is
π , then, in order for the long-run solution to be pt = p∗t , equation (9.31) must
include an intercept term so that the equation becomes

∆pt = −(1− β
1−α)π +

α
1−α(p

∗
t − pt)+

β
1−αEt∆pt+1. (9.32)

In the Calvo model, pt = p∗t in the long run only if π = 0 or, when π > 0,
if the probability of being able to adjust to equilibrium is unity, i.e., if ρ = 1.
Similarly, in the optimal adjustment model, we require either that π = 0 or, for
π > 0, that the discount rate β = 1.

9.5 The New Keynesian Phillips Curve

The inflation equation is a key relation in models of inflation and monetary-
policy analysis. In Keynesian models inflation is determined from the Phillips
curve, an ad hoc relation between inflation and unemployment, which we may
write in terms of price inflation and unemployment as

πt = α− βut, (9.33)

where ut is the unemployment rate. Equation (9.33) implies a permanent trade-
off between inflation and unemployment. We note that the original Phillips
curve used wage inflation and not price inflation.

Observing that the evidence increasingly failed to support a stable negative
relation between inflation and unemployment, the Phillips curve came to be
replaced by the expectations-augmented Phillips curve (see Friedman 1968;
Phelps 1967), which takes the form

πt = Etπt+1 − β(ut −un
t ), (9.34)

whereun
t is the natural (or long-run equilibrium) rate of unemployment (i.e., the

“nonaccelerating inflation rate of unemployment” (NAIRU)). In equation (9.34)
there is only a short-run trade-off between inflation and unemployment, not
a long-run trade-off. This is because unemployment will eventually return to
its natural rate. When this happens inflation will equal expected future infla-
tion, and so is not determined within the equation; i.e., equation (9.34) allows
inflation to take any value in the long run. (We note that this is also a property
of equation (9.31) when β/(1 − α) = 1.) The absence of a long-run trade-off
between inflation and unemployment seems to accord better with the evidence
during the high-inflation years of the 1970s and 1980s. Figures 13.1–13.3 in
chapter 13 plot Phillips curves for the United States and United Kingdom.

Later, in the 1990s, the evidence seemed to show that the natural rate of
unemployment varied as much as the actual rate of unemployment, thereby
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largely destroying any link between inflation and unemployment. This led to the
development of the New Keynesian Phillips curve. This is closely related to the
NAIRU model, but it has more explicit microfoundations and does not depend
on unemployment to provide the driving variable linking the real economy to
inflation.

The New Keynesian Phillips curve is based on a model of optimal pricing in
imperfect competition and a theory of price stickiness (see Roberts 1995, 1997;
Clarida et al. 1999; McCallum and Nelson 1999; Svensson and Woodford 2003,
2004; Woodford 2003; Gianoni and Woodford 2005). From equation (9.32) we
may express inflation as

πt = −
(

1− β
1−α

)
π + α

1−α(p
∗
t − pt)+

β
1−αEtπt+1, (9.35)

where in long-run equilibrium p∗t = pt and πt = π . In equation (9.35) inflation
is generated by current expected future deviations of the actual price from the
optimal price.

Our previous discussion of pricing in imperfect competition showed that the
optimal price is a markup over marginal cost (see equations (9.1)–(9.3)). In this
case we may write the logarithm of the optimal price p∗t as

p∗t = µt +mct,
wheremct is the log of marginal cost and µt is the markup over marginal cost.
The markup depends on the price elasticity of demand. From equation (9.1),

µt � −εD,t.
Hence the greater the price elasticity, the smaller the markup. From equa-

tion (9.3), and in the case of a single factor, namely, labor,

mct = −νt +wt −mpt,
νt = εXi,t,

where νt is the labor markup, which depends on the labor-supply elasticity
εXi,t , wt is the log of the nominal-wage rate, andmpt is the log of the marginal
product of labor. The less elastic the labor-supply function is, the higher the
marginal cost. For a Cobb–Douglas production function written in logs

yt = at +φnt, 0 < φ < 1,

whereyt is output,nt is employment, and at is technological progress, we have

mpt = lnφ+yt −nt
= lnφ+ at

φ
− 1−φ

φ
yt. (9.36)

The optimal price is therefore

p∗t = − lnφ+ µt − νt +wt − atφ + 1−φ
φ

yt, (9.37)



�

�

“wickens” — 2007/10/15 — 13:08 — page 230 — #248
�

�

�

�

�

�

230 9. Imperfectly Flexible Prices

and so the deviation of the optimal price from the actual price is

p∗t − pt = − lnφ+ µt − νt − atφ + 1−φ
φ

yt + (wt − pt). (9.38)

Substituting equation (9.38) into (9.35) gives the inflation equation

πt = −
[(

1− β
1−α

)
π + α lnφ

(1−α)
]
+ β

1−αEtπt+1 + α(1−φ)(1−α)φyt

+ α
(1−α)(wt − pt)−

α
(1−α)φat +

α
(1−α)(µt − νt). (9.39)

By exploiting the fact that in equilibrium p∗t = pt , we can write the inflation
equation (9.39) in another way. Denoting equilibrium values by an asterisk and
deviations from equilibrium by a tilde, so that p̃t = p∗t − pt , equation (9.38)
implies that

0 = − lnφ+ µ∗t − ν∗t −
a∗t
φ
+ 1−φ

φ
y∗t + (w∗

t − p∗t ),

and hence

p̃t = −µ̃t + ν̃t − ãtφ − 1−φ
φ

ỹt − (w̃t − p̃t). (9.40)

It then follows from equations (9.35) and (9.40) that the inflation equation can
be written as

πt = −
(

1− β
1−α

)
π + β

1−αEtπt+1 − α
1−αµ̃t +

α
1−αν̃t

+ α
(1−α)φãt −

α(1−φ)
(1−α)φỹt −

α
1−α(w̃t − p̃t). (9.41)

Hence inflation will increase if yt > y∗t , i.e., if output is above its equilibrium
level (sometimes measured in empirical work by its trend level), or if the real
wage or the price markup exceed their equilibrium levels, or if the labor markup
is below its equilibrium level, or if there is a negative technology shock.

A number of observations may be made about equation (9.39). First, it is more
complex than the usual specification of the New Keynesian inflation equation,
which does not include the real-wage term, the markups, or the productivity
shock. Assuming that equation (9.41) is correct, it would, of course, be a speci-
fication error to omit these terms. On the other hand, the markup and produc-
tivity terms may be small relative to the output and real-wage terms. Second,
the equation is based on having a single factor of production: labor. In practice,
there are other factors: for example, physical capital and material inputs. There
is therefore an argument for deriving a more complete model of inflation that
takes these into account. Third, and related to this, we have previously argued
that a general increase in the prices of all factors is required for the effect on
inflation to be sizeable in the longer term. An increase in the unit cost of a single
factor (for example, an oil price increase) may not have a significant effect on
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inflation for long due to factor substitution in the longer term. Fourth, in equa-
tion (9.36) we expressed the marginal product of labor in terms of output. We
could, however, have expressed it in terms of labor, in which case the equation
would become

mpt = lnφ+ at − (1−φ)nt.
The resulting inflation equation would then be

πt = −
(

1− β
1−α

)
π + β

1−αEtπt+1 − α
1−αµ̃t +

α
1−αν̃t

+ α
(1−α)ãt −

α(1−φ)
(1−α) ñt −

α
1−α(w̃t − p̃t), (9.42)

where we may interpret ñt , the deviation of employment from its long-run
equilibrium value, as unemployment.

9.5.1 The New Keynesian Phillips Curve in an Open Economy

So far we have measured inflation in terms of the GDP deflator. Monetary policy
is, however, usually conducted with reference to the consumer price index (CPI).
In a closed economy there is little difference between the GDP deflator and the
CPI, but in an open economy there is an important difference as the CPI also
reflects the price of foreign tradeables. Inflation measured by the GDP deflator
is

πt = (1− snt
t )π

t
t + snt

t π
nt
t ,

where πt is the inflation rate of domestically produced goods and services and
snt
t is the share of nontraded goods. This is a weighted average of πnt

t , the infla-
tion rate of domestic nontraded goods, and π t

t , the inflation rate of domestic
traded goods. CPI inflation is measured by a weighted average of πt and the
inflation rate of imported goods, πm

t , and is given by

πcpi
t = (1− sm

t )πt + sm
t π

m
t ,

where sm
t is the share of imports.

In an economy where producers have little or no monopoly power—a typical
situation for a small economy—domestic traded goods prices are equal to world
prices expressed in domestic currency. Thus

π t
t = πm

t = πw
t +∆st,

where πw
t is the world inflation rate and ∆st is the proportionate rate of change

of the exchange rate (the domestic price of foreign exchange). In an open econ-
omy in which producers have a degree of monopoly power, such as a large
economy, import prices will be fully or partly priced to market. Consequently,

πm
t =ϕ(1− η)(πw

t +∆st)+ (1−ϕ)ηπ t
t ,

where ϕ = 1 for full exchange rate pass through, and η = 1 for full pricing-to-
market (both lie in the interval [0,1]), and π t

t is determined domestically.
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Thus, measured by the GDP deflator, inflation in a small open economy is

πt = snt
t π

nt
t + (1− snt

t )(π
w
t +∆st),

and in a large open economy it is

πt = (1− snt
t )π

t
t + snt

t π
nt
t .

CPI inflation in a small open economy is given by

πcpi
t = (1− sm

t )s
nt
t π

nt
t + [1− sm

t (1− snt
t )](π

w
t +∆st),

and in a large open economy it is given by

πcpi
t = (1−sm

t )s
nt
t π

nt
t +[(1−sm

t )(1−snt
t )+sm

t (1−ϕ)η]π t
t+sm

t ϕ(1−η)(πw
t +∆st).

Consequently, the impact of changes in the exchange rate on inflation depends
on how inflation is measured and on the size of the economy. It has little or no
effect on the GDP deflator for a large open economy. For a small economy, it
has a greater effect on CPI inflation than on GDP inflation.

To complete the model of CPI inflation we need to specify traded and non-
traded goods inflation. Suppose that they are identical, and hence equal to GDP
inflation, and that they are determined by the New Keynesian Phillips curve.
Then, from equation (9.35),

πt = α
1−α

∞∑
s=0

(
β

1−α
)s
Et(p∗t+s − pt+s),

provided β/(1−α) < 1. Hence CPI inflation is given by

πcpi
t = [(1− sm

t )+ sm
t (1−ϕ)η]πt + sm

t ϕ(1− η)(πw
t +∆st)

= δα
1−α(p

∗
t − pt)+

β
1−αEtπ

cpi
t+1 + sm

t δ(1− η)(πw
t +∆st)

− β
1−αEt[s

m
t+1ϕ(1− η)(πw

t+1 +∆st+1)],

where pt is the GDP price level and δ = [(1−sm
t )+sm

t (1−ϕ)η]. Thus, CPI infla-
tion replaces GDP inflation and includes world inflation expressed in domestic
currency.

9.6 Conclusions

The evidence shows that prices are not perfectly flexible and that the frequency
of price changes varies between different types of goods and services. This sug-
gests that prices are not determined in perfectly competitive markets. Modern
theories of price determination adopt an optimizing framework but seek to
explain price stickiness by assuming imperfect competition. We have extended
this to price determination in the open economy. As a result, prices and output
differ from the levels that would prevail in perfect competition.



�

�

“wickens” — 2007/10/15 — 13:08 — page 233 — #251
�

�

�

�

�

�

9.6. Conclusions 233

The three leading theories of price stickiness yield very similar models of
inflation. These, together with the assumption of imperfect competition, form
the basis of the New Keynesian Phillips curve. In an open economy it is neces-
sary to distinguish between GDP and CPI inflation. The New Keynesian open-
economy Phillips curve includes an additional variable: the rate of inflation of
world prices measured in domestic currency. As the impact of foreign inflation
on domestic inflation is affected by the exchange rate, the exchange rate pro-
vides an additional channel in the transmission mechanism of monetary policy.
The significance of this channel depends on the degree of imperfect competi-
tion in traded goods markets, which affects how the prices of traded goods are
set in foreign markets. After including all of the features we have discussed, the
resulting price equation has become quite complex. It is therefore common in
monetary-policy analysis to use a simplified version of the price equation that
is closely related to the basic Calvo model.
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Asset Pricing and Macroeconomics

10.1 Introduction

Assets—physical, human, and financial capital—play a crucial role in macro-
economics. They are required for production and for generating income, and
they are central to the intertemporal allocation of resources through the pro-
cesses of saving, lending, and borrowing. In this chapter we focus on how finan-
cial assets are priced in general equilibrium. In chapter 11 we apply these the-
ories to three financial assets: bonds, equity, and foreign exchange. Each asset
has specific features that require the theories to be applied separately.

We began our macroeconomic analysis by discussing the decision about
whether to consume today or in the future. This gave us our theories of physical
capital accumulation and savings. We argued that people plan their consump-
tion both for today and for the rest of their lives with the aim of maintaining
their standard of living even though income may vary through time. During
periods when income is low—in retirement or in periods of unemployment, for
example—their standard of living would fall unless they had saved some of
their income and could draw on this. In order to consume more in the future,
people must consume less today, i.e., they substitute intertemporally between
consumption today and consumption in the future. The decision of whether to
consume or to save depends on the rate of return to savings relative to the rate
of time preference: in other words, on the price of financial assets.

Future consumption requires output and hence physical capital. The decision
on whether to invest and accumulate capital or to disburse profits depends on
the rate of return to capital and the cost of borrowing from households. In
general equilibrium, the rate of return to capital and the rate of interest on
savings are related because firms will not be willing to borrow at rates higher
than their rate of return to capital, and households will not be willing to lend to
firms, or anyone else, such as government, unless the rate of return to savings
is greater than or equal to their rate of time preference. Moreover, no matter
the type of asset, we want to price them in a consistent way. We therefore seek
a theory of asset pricing that reflects these intertemporal general equilibrium
considerations.

So far we have treated asset returns as though they are all risk free. In
practice, however, nearly all assets are risky, having uncertain payoffs in the
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future and hence risky returns. We therefore need our theory of asset pricing
to take account of risk. One way of classifying the various theories of asset
pricing is through the way they account for risk, and hence in their measure
of the risk premium—the additional expected return in excess of the certain
return required to compensate for bearing risk or uncertainty. We consider
four theories of asset pricing: contingent-claims analysis, general equilibrium
asset pricing, the consumption-based capital-asset-pricing model, and the tra-
ditional capital-asset-pricing model. We also show how they are related. As risky
returns are random variables, we use stochastic dynamic programming instead
of Lagrange multiplier analysis though, as explained, Lagrange multiplier analy-
sis could still be used. We begin by considering some preliminaries: expected
utility and risk aversion, the risk premium, arbitrage and no arbitrage, and their
implications for efficient market theory. We then consider contingent-claims
theory before turning to intertemporal asset pricing. In chapter 11 we apply
this theory to the stock, bond, and foreign exchange markets.

A helpful general reference for the basic concepts of the theory of finance
covered here is Ingersoll (1987). An excellent recent reference covering asset
pricing theory based on the discount-factor approach is Cochrane (2005). For
discussion of the links between finance and macroeconomics see Lucas (1978)
and Altug and Labadie (1994). In keeping with the rest of this book, our dis-
cussion of finance will use discrete time. For an account of the intertemporal
capital-asset-pricing model in continuous time see Merton (1973).

10.2 Expected Utility and Risk

10.2.1 Risk Aversion

We begin by establishing a definition of risk aversion. Consider a gamble with
a random payoff (value of wealth after the gamble) W in which there are two
possible outcomes (payoffs or prospects) x1 and x2. Let the probabilities of the
two outcomes be π and (1 − π), respectively. The issue is whether to avoid
the gamble and receive with certainty the actuarial value of the gamble (i.e., its
expected or average value), or to take the gamble even though this involves an
uncertain outcome.

A person who prefers the gamble is a risk lover, one who is indifferent is risk
neutral, and one who prefers the actuarial value with certainty is risk averse.
The expected (or actuarial) value of the gamble is

E(W) = πx1 + (1−π)x2.

A fair gamble is one where E(W) = 0.
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For the utility function U(W) with U ′(W) � 0 and U ′′(W) � 0 we can define
attitudes to risk more precisely as follows:

risk aversion, U[E(W)] > E[U(W)];

risk neutrality, U[E(W)] = E[U(W)];
risk loving, U[E(W)] < E[U(W)].

It can be shown that

E[U(W)] � U[E(W)] as U ′′ � 0.

This is known as Jensen’s inequality. To prove this, consider a Taylor series
expansion about E(W):

E[U(W)] = E(U[E(W)])+ E(W − E[W])U ′ + 1
2E[W − E(W)]2U ′′

= U[E(W)]+ 1
2E[W − E(W)]2U ′′

� U[E(W)] as U ′′ � 0.

Consider now the case where there is a single risky asset with return r and
variance V(r) and a risk-free asset with return r f. If the initial stock of wealth
is W0, then wealth after investing in the risky asset is W r = W0(1+ r) and after
investing in the risk-free asset it isW f = W0(1+r f). Expanding E[U(W r)] about
r = r f we obtain

E[U(W r)] � U[W0(1+ r f)]+W 2
0

1
2V(r)U

′′[W0(1+ r f)] (10.1)

� U[W0(1+ r f)] = U(E[W f]) as U ′′ � 0. (10.2)

Hence, for a risk-averse investor (i.e., U ′′ < 0) the expected utility of investing
in the risky asset (taking a gamble) E[U(W r)] is less than the certain utility of
investing in the risk-free asset U(E[W f]). We conclude that when the expected
returns are the same, a risk-averse investor would prefer not to take a gamble.
On the other hand, the investor who is risk neutral (U ′′ = 0) would be indifferent
between the two assets.

10.2.2 Risk Premium

We now ask how much compensation a risk-averse investor would need in order
to be willing to take the gamble or hold the risky asset. We assume that this
compensation can take the form of a known additional payment, or of a higher
expected return than the risk-free rate. The additional (certain) payoff (return)
required to compensate for the risk arising from taking the fair gamble is called
the risk premium. We consider only the case of a single risky asset and a single
risk-free asset.

In equation (10.2) we showed that for a risk-averse investor, E[U(W r)] <
U(E[W f]). We define the risk premium as the certain value of ρ that satisfies
E(r) = r f + ρ and

E[U(W r)] = U(W f). (10.3)



�

�

“wickens” — 2007/10/15 — 13:08 — page 237 — #255
�

�

�

�

�

�

10.3. No-Arbitrage and Market Efficiency 237

We now take a Taylor series expansion of E[U(W r)] about r = r f +ρ to obtain

E[U(W r)] � U[W0(1+ r f + ρ)]+W 2
0
E(r − r f − ρ)2

2
U ′′. (10.4)

Expanding U[W0(1+ r f + ρ)] about ρ = 0 we obtain

U[W0(1+ r f + ρ)] � U[W0(1+ r f)]+W0ρU ′. (10.5)

Combining equations (10.4) and (10.5) gives

E[U(W r)] � U(E[W f])+W0ρU ′ +W 2
0

1
2V(r)U

′′. (10.6)

It follows that if equation (10.3) is satisfied, then

ρ = −V(r)
2
W0U ′′

U ′
.

Thus, the risk premium ρ will be larger, the larger the coefficient of relative risk
aversion −(W0U ′′/U ′) (i.e., the curvature of the utility function) and the larger
the variance (or volatility) of the risky return, V(r).

10.3 No-Arbitrage and Market Efficiency

10.3.1 Arbitrage and No-Arbitrage

Whether or not assets are correctly priced by a market relates to the concepts
of arbitrage and no-arbitrage.

1. An arbitrage portfolio is a self-financing portfolio with a zero or negative
cost that has a positive payoff.

2. An arbitrage-free, or no-arbitrage, portfolio is a self-financing portfolio
with a zero payoff.

Crudely put, an arbitrage portfolio gives the investor something for nothing.
Such opportunities are therefore rare. The financial market, seeing the existence
of an arbitrage opportunity, would compete for the assets, thereby raising their
price and eliminating the arbitrage opportunity. It is therefore common in the
theory of asset pricing to assume that arbitrage opportunities do not exist and
to impose this as a restriction. The implication is that if a market is efficient,
then it is pricing assets correctly and quickly eliminates arbitrage opportunities.

10.3.2 Market Efficiency

A market is said to be efficient if there are no unexploited arbitrage opportu-
nities. This requires that all new information is instantly impounded in market
prices. This is an exacting standard. In practice, fully and correctly reflecting all
relevant information so that new information, or new ways of processing this
information, have no effect on an asset or any other price is almost impossible



�

�

“wickens” — 2007/10/15 — 13:08 — page 238 — #256
�

�

�

�

�

�

238 10. Asset Pricing and Macroeconomics

to achieve. In principle, the concept should be extended even further to become
a criterion of general equilibrium.

The return on an asset may be written as

rt+1 = Xt+1

Pt
,

where Pt is the price of the asset at the start of period t and Xt+1 is its value
or payoff at the start of period t+ 1. For any risky asset i with return ri,t+1 the
absence of arbitrage opportunities implies that

Etri,t+1 = r f
t + ρit, (10.7)

where r f
t , the return on the risk-free asset, is known with certainty at the start

of period t, and ρit is the risk premium for the ith asset, also known at the
start of period t.

Equation (10.7) shows that asset pricing consists of pricing one asset relative
to another, namely, the risk-free rate, then adding the risk premium. Traditional
finance commonly does this by relating the risk premium to a set of factors
determined from the past behavior of asset prices. An example is the use of
affine factor models to determine the prices of bonds with different times to
maturity, i.e., the term structure of interest rates. In contrast, the general equi-
librium theory of asset pricing is based on identifying the fundamental sources
of risk generated by macroeconomic fluctuations and their uncertainty. These
are due largely to unanticipated fluctuations in output and inflation in both the
domestic and the international economies. We begin our discussion of asset
pricing by considering contingent-claims analysis.

10.4 Asset Pricing and Contingent Claims

Contingent-claims analysis provides a very general theory of asset pricing to
which all other theories may be related. A typical asset can be thought of as
comprising a combination of primitive assets called contingent claims. Once
we know the prices of the primitive assets we can calculate the price of any
other asset. We state the problem of pricing an asset using contingent claims
as follows:

1. The price of an asset depends on its payoff.

2. Payoffs are typically unknown today. They depend on the state of the
world tomorrow.

3. All assets can be considered as a bundle of primitive assets called
contingent claims.

4. The difference between assets arises from the way the contingent claims
are combined.

5. If we can price each contingent claim, then we can price any combination
of them, i.e., any asset.
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10.4.1 A Contingent Claim

Suppose there are s = 1, . . . , S states of the world. A contingent claim is an asset
that has a payoff of $1 if state s occurs and a payoff of 0 otherwise. Let q(s)
denote today’s price of a contingent claim with a payoff of $1 in state s. Also
let x(s) be the quantity of this contingent claim that is purchased at date t.
Finally, let p denote today’s price of an asset whose payoff depends on which
state of the world s = 1, . . . , S occurs.

10.4.2 The Price of an Asset

Provided the state prices exist, the price p of any asset can now be expressed
as

p =
S∑
s=1

q(s)x(s). (10.8)

The vector q = [q(1)q(2) · · ·q(S)]′ is then known as a state-price vector. This
relation says that the price of the asset is simply equal to the sum of the price
in a given state s multiplied by the quantity of contingent claims held in that
state.

10.4.3 The Stochastic Discount-Factor Approach to Asset Pricing

Suppose that π(s) is the probability of state s occurring. The π(s) therefore
define the state-density function. Next we define

m(s) = q(s)
π(s)

, s = 1, . . . , S. (10.9)

Thus m(s) is the price in state s divided by the probability of state s occur-
ring; m(s) is nonnegative because state prices and probabilities are both
nonnegative. We can now write the price of the asset as

p =
S∑
s=1

π(s)m(s)x(s)

= E(mx). (10.10)

m(s) can therefore be interpreted as the value of the stochastic discount factor
of $1 in state s, x(s) can be interpreted as the payoff in state s, and the price of
the asset as the average, or expected, discounted value of these payoffs. Ifm(s)
is small, then state s is “cheap” in the sense that investors are unwilling to pay a
high price to receive the payoff in state s. An asset that delivers in cheap states
tends to have a payoff that covaries negatively with m(s), i.e., cov(m,x) < 0.

Equation (10.10) is a completely general pricing formula applicable to all
assets, including derivatives such as options. It is called the stochastic discount-
factor approach. All other asset-pricing theories can be expressed in this form.
The differences between them are in the way that the stochastic discount factor
m is specified. The reader is referred to Cochrane (2005) for a more detailed
treatment of the stochastic discount-factor approach to asset pricing.
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10.4.4 Asset Returns

Equation (10.10) can be expressed in terms of returns instead of the asset price.
Dividing equation (10.8) through by p and defining 1 + r(s) = x(s)/p for s =
1, . . . , S, we can rewrite equation (10.8) as

1 =
S∑
s=1

q(s)[1+ r(s)]. (10.11)

It follows that

1 =
S∑
s=1

π(s)m(s)[1+ r(s)]

= E[m(1+ r)], (10.12)

where r is the return on the asset. This is the stochastic discount-factor
representation of returns, whether risky or risk free.

10.4.5 Risk-Free Return

Since equation (10.12) applies to all assets, it applies to risk-free assets. If the
asset is risk free, then it has the same payoff in all states of the world. Thus,
x(s) is independent of s, and we can write x(s) = x for all s. The price of the
risk-free asset is then

pf =
∑
q(s)x = x

∑
q(s)

= x
∑
π(s)m(s) = xE(m), (10.13)

otherwise an arbitrage opportunity would exist.
If, for example, x = 1, then the price of an asset today that pays one unit in

all states of nature next period is given by

pf = E(m),
or

1 = 1
pf
E(m)

= (1+ r f)E(m),

where r f is the risk-free rate. Further,

E(m) = 1
1+ r f

. (10.14)

10.4.6 The No-Arbitrage Relation

We can derive the no-arbitrage relation, equation (10.7), from equations (10.12)
and (10.14). From the definition of a covariance between two random variables
x and y ,

Cov(x,y) = E(xy)− E(x)E(y),
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and noting that in general m and r are stochastic, we may rewrite equa-
tion (10.12) as

1 = E(m)E(1+ r)+ Cov(m,1+ r);

hence

E(1+ r) = 1
E(m)

− Cov(m,1+ r)
E(m)

. (10.15)

From equations (10.14) and (10.15) we obtain the no-arbitrage relation:

E(r) = r f − Cov(m,1+ r)
1+ r f

. (10.16)

Thus the risk premium ρ is

ρ = −Cov(m,1+ r)
1+ r f

. (10.17)

For ρ > 0 we require that Cov(m,1+ r) = Cov(m, r) < 0. In other words, risk
arises when low returns coincide with a high discount factor. We will consider
how to determine the stochastic discount factor below.

10.4.7 Risk-Neutral Valuation

Having introduced the concept of a risk premium, before pursuing the issue of
how to determine it, we consider how to avoid considerations of risk by using
risk-neutral valuation. This requires us to use the concept of a risk-neutral prob-
ability πN(s) instead of the state probability π(s), which is the actual proba-
bility of state s occurring. The price of any asset can be represented as the
expected value of its future random payoffs using these risk-neutral probabili-
ties. Risk-neutral (or risk-adjusted) probability is crucial to many results in the
theory of finance, particularly in pricing options.

10.4.7.1 Risk-Neutral Probability

Given a positive state-price vector [q(1)q(2) · · ·q(S)]′, we may define the risk-
neutral probability π∗(s) as

πN(s) = (1+ r f)π(s)m(s)

= 1∑
q(s)

π(s)
(
q(s)
π(s)

)
= q(s)∑

q(s)
,

where
S∑
s=1

πN(s) = 1 and 0 < π∗(s) < 1.
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10.4.7.2 Asset Pricing Using Risk-Neutral Probabilities

We can convert the price of an asset written in terms of state probabilities into
one written in terms of risk-neutral probabilities as follows:

p =
∑
π(s)m(s)x(s)

= 1
1+ r f

∑
πN(s)x(s)

= 1
1+ r f

EN[x(s)]

= E(m)EN(x),

where we have substituted 1/E(m) for 1 + r f. Hence, by using risk-neutral
probabilities, we can express the price of an asset as

p = E[mx] = E(m)EN(x) (10.18)

= 1
1+ r f

EN(x), (10.19)

where EN(·) denotes an expectation taken with respect to the risk-neutral prob-
abilities. Equation (10.18) implies that using risk-neutral probabilities, m and
x are uncorrelated. Equation (10.19) shows that the price of any asset can be
written as the expected discounted value of its future payoffs, where the dis-
counting is done by means of the stochastic discount factor m(s). It then fol-
lows that the price of the asset is proportional to the risk-neutral expectation
of its random payoff.

From equation (10.19), the no-arbitrage equation for returns can now be
written without a risk premium as

EN(r) = r f. (10.20)

Comparing equation (10.7) or equation (10.16) with (10.20) we deduce that

EN(r) = E(r)− ρ,
where ρ is the risk premium. Thus risk-neutral valuation risk-adjusts the risky
return. It does not, of course, eliminate the risk itself, which remains. The
advantage is that it can simplify asset pricing.

10.5 General Equilibrium Asset Pricing

In general equilibrium, asset prices are determined jointly with all other vari-
ables in the economy. Previously in our discussion of the real macroeconomy,
we determined the real rate of return to capital jointly with consumption, invest-
ment, and capital. But in our discussion of households and life-cycle theory we
treated the rate of return to financial assets as given. We now reconsider the
analysis of the household, who we take to be the representative investor in
financial assets. We begin by examining the problem using contingent-claims
analysis. We then extend the discussion to the type of formulation of the
macroeconomy that we have used until this chapter.
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10.5.1 Using Contingent-Claims Analysis

Consider a representative household who is deciding between consumption
today and consumption tomorrow, where current income is known with cer-
tainty but income next period is random and hence uncertain. We do not specify
the source of this income, which could be from working or from asset income.
We assume that the household maximizes the value of current plus discounted
expected future utility—both derived from consumption—subject to a budget
constraint that depends on the state of the world in the second period. Thus
the problem is to maximize

V = U(ct)+ βEtU(ct+1)

≡ U(c)+ β
∑
s
π(s)U[c(s)]

subject to
c +

∑
s
q(s)c(s) = y +

∑
s
q(s)y(s),

where c is current consumption and y is current income and both are known
with certainty in the current period, c(s) is next period’s consumption andy(s)
is next period’s income and both are unknown in the current period as s, the
state of the economy next period, is unknown. The q(s) are the state prices
for contingent claims that are used to value future random consumption and
income streams.

Although the problem is stochastic, it can be analyzed using Lagrange
multiplier analysis. The problem is to maximize the Lagrangian

L = U(c)+ β
∑
s
π(s)U[c(s)]+ λ

[
y +

∑
s
q(s)y(s)− c −

∑
s
q(s)c(s)

]
.

The first-order conditions are given by

∂L
∂c

= U ′(c)− λ = 0,

∂L
∂c(s)

= βπ(s)U ′[c(s)]− λq(s) = 0, s = 1, . . . , S.

Combining these conditions yields the set of conditions

q(s) = βπ(s)U
′[c(s)]
U ′(c)

, s = 1, . . . , S.

From equation (10.9),
q(s) = π(s)m(s);

hence

m(s) = βU
′[c(s)]
U ′(c)

. (10.21)

Thus, the stochastic discount factor is the intertemporal marginal rate of sub-
stitution in consumption between two consecutive periods. As consumption in
the second period is a random variable, so is the stochastic discount factor.
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It also follows that the state prices q(s) are defined as the product of the
state probabilities and the intertemporal marginal rate of substitution in con-
sumption between two consecutive periods. If we are willing to formulate a
well-specified underlying economic model, we can then obtain explicit expres-
sions for the state prices q(s). The expected value of any random consumption
stream is given by∑

s
q(s)c(s) =

∑
s
π(s)m(s)c(s) = E(mc).

Having determined the stochastic discount factors m(s), we can price any
asset in this economy using equation (10.8). The resulting price is

p =
∑
s
π(s)m(s)x(s)

= β
∑
s π(s)U ′[c(s)]x(s)

U ′(c)
. (10.22)

In particular, we can price the income stream y(s) by setting x(s) = y(s).
We can also rewrite equation (10.22) in terms of the stochastic rate, or return,

r(s) as ∑
s
π(s)

βU ′[c(s)]
U ′(c)

[1+ r(s)] = 1, (10.23)

where 1+ r(s) = x(s)/p. Equation (10.23) is just an Euler equation defined for
stochastic returns.

If we denote the current period as time t and the second period as t+1, then
we can rewrite the no-arbitrage equation (10.16) for the return on any risky
income stream as

E(rt+1) = r f
t −

1

1+ r f
t

Cov
[
βU ′(ct+1)
U ′(ct)

, rt+1

]
. (10.24)

This will also be the no-arbitrage equation for the return on any asset in the
economy. The last term is the risk premium.

10.5.2 Asset Pricing Using the Consumption-Based Capital Asset-Pricing
Model (C-CAPM)

Equation (10.24) is commonly known as the asset-pricing equation for the
consumption-based capital-asset-pricing model (see Breedon 1979). We now
derive this equation using the formulation of the macroeconomy that we have
used in previous chapters. We demonstrate that the Euler equation used to
determine the optimal path of consumption is also used to price assets. This
result shows that the DGE model provides a single theoretical framework for
use in both macroeconomics and finance, and hence unifies the two subjects.

In chapter 4 we defined the household’s problem as maximizing

Vt =
∞∑
s=0

βsU(ct+s) (10.25)
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subject to the budget constraint

∆at+1 + ct = xt + rtat, (10.26)

where xt is income and at is the real stock of assets. It was assumed that the
future was known with certainty. We now assume that the future is uncertain
so that {xt+s , rt+s ; s > 0} are random variables. We therefore replace equa-
tion (10.25) by its conditional expectation based on information available at
time t:

Vt =
∞∑
s=0

βsEt[U(ct+s)]. (10.27)

Previously, we solved the optimization using the method of Lagrange multi-
pliers. As explained in the mathematical appendix, the problem with applying
this method to the stochastic case is that the Lagrange multipliers are also
random variables. As a result, the Euler equation is expressed in terms of the
conditional expectation of the product of the rate of change in the Lagrange
multipliers and rt+1, and we are unable to substitute the marginal utility of con-
sumption for the Lagrange multipliers and so solve for consumption. Instead,
therefore, we use the method of stochastic dynamic programming, the details
of which are given in the mathematical appendix.

First, we rewrite equation (10.27) as the recursion

Vt = U(ct)+ βEt[Vt+1]. (10.28)

More generally, we could have a time-nonseparable utility function

Vt = G{U(ct), Et[Vt+1]}.
The advantage of such a formulation is that it enables attitudes to risk to be dis-
tinguished from attitudes to time (see Kreps and Porteus 1978). For simplicity,
we shall confine ourselves to time-separable utility as in equation (10.28). We
note that the assumed time horizon in equation (10.27) is infinity. We can jus-
tify this by noting that, although people live finite lives, provided their effective
time horizon is long enough, the assumption of an infinite horizon will provide
a very good approximation. We may also note that people do not know when
they will die and act for most of their lives as though they have many more years
to live. Further, if reoptimization takes place each period, only the first period
(period t) would be carried out. A common reformulation of equation (10.27)
with a finite horizon of T is

Vt =
T∑
i=0

βiEt[U(ct+i)]+ βTEt[B(aT )], (10.29)

where B(aT ) can be interpreted as a bequest motive. The familiar capital-asset-
pricing model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin (1966) is
another special case of equation (10.29) involving only the last term. In other
words, in CAPM the aim is to maximize the value of the stock of financial assets
at some point in the future, thereby ignoring intermediate consumption.
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10.5.2.1 The Stochastic Dynamic Programming Solution

The problem is to maximize the value-function equation (10.28) subject to the
dynamic-constraint equation (10.26). As shown in the mathematical appendix,
provided a solution exists, the first-order condition can be obtained by differ-
entiating with respect to ct to give

∂Vt
∂ct

= ∂Ut
∂ct

− βEt
(
∂Vt+1

∂ct

)
= 0 (10.30)

with
∂Vt+1

∂ct
= ∂Vt+1

∂ct+1

∂ct+1

∂ct
.

In order to evaluate Et(∂Vt+1/∂ct+1) we note that

Vt+1 = U(ct+1)+ βEt+1(Vt+2);

hence,
∂Vt+1

∂ct+1
= ∂Ut+1

∂ct+1
.

To evaluate ∂ct+1/∂ct we express ct+1 as a function of ct . This requires using
the two-period budget constraint obtained by combining the budget constraints
for periods t and t + 1 to eliminate at+1 so that

ct + ct+1

1+ rt+1
+ at+2

1+ rt+1
= xt + xt+1

1+ rt+1
+ at(1+ rt).

Hence,
∂ct+1

∂ct
= −(1+ rt+1).

The first-order condition (10.30) can now be written as

∂Vt
∂ct

= ∂Ut
∂ct

− βEt
[
∂Ut+1

∂ct+1
(1+ rt+1)

]
= 0.

We therefore obtain the Euler equation for the stochastic case as

Et
[βU ′t+1

U ′t
(1+ rt+1)

]
= 1. (10.31)

This is equivalent to equations (10.23) and (10.12) with

Et[Mt+1(1+ rt+1)] = 1 (10.32)

and Mt+1 ≡ (βU ′t+1/U
′
t ).

10.5.2.2 Pricing Risky Assets

Previously we solved the Euler equation for consumption, taking the rate of
return as given. To obtain the asset price we reverse this by solving instead
for rt+1 in terms of consumption. In this way we use the same stochastic
dynamic general equilibrium model to determine the macroeconomic variables
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and the asset prices. We therefore unify economics and finance within a single
theoretical framework.

In general, the Euler equation will be highly nonlinear. We therefore take
a Taylor series expansion of the Euler equation about ct+1 = ct . Expanding
U ′(ct+1) about ct+1 = ct to give

U ′(ct+1) � U ′(ct)+ (ct+1 − ct)U ′′t
leads to the approximation

βU ′t+1

U ′t
� β

[U ′t +∆ct+1U ′′t
U ′t

]
= β

[
1+ ∆ct+1

ct
ctU ′′t
U ′t

]

= β
[

1− σt∆ct+1

ct

]
,

where

σt = −ctU
′′
t

U ′t
� 0, as U ′′t � 0,

is the coefficient of relative risk aversion (CRRA); the greater the CRRA is, the
more risk averse the investor. We recall that in the special case of power utility,

U(ct) = c
1−σ
t − 1

1− σ , σ � 0;

the CRRA is a constant, i.e., σt = σ .
We can now write the Euler equation as

Et
[
β
(

1− σt∆ct+1

ct

)
(1+ rt+1)

]
= 1.

Recalling that β = 1/(1+ θ) this can be rewritten as

1− σtEt
(
∆ct+1

ct

)
+ Et(rt+1)− σtEt

(
∆ct+1

ct
rt+1

)
= 1+ θ.

Using the fact that1

Et
(
∆ct+1

ct
rt+1

)
= Covt

(
∆ct+1

ct
, rt+1

)
+ Et

(
∆ct+1

ct

)
Et(rt+1),

we obtain an expression for the expected rate of return:

Et(rt+1) = θ + σtEt(∆ct+1/ct)+ σt Covt((∆ct+1/ct), rt+1)
1− σtEt(∆ct+1/ct)

. (10.33)

1 If, for example, Xt+1 is a vector of random variables with conditional mean AXt so that
Xt+1 = AXt+et , where the et are independently distributed with zero mean and variance Σt , then
for any two elements xi,t+1 and xj,t+1 we have Covt(xi,t+1, xj,t+1) = σij,t , where Σt = {σij,t}.
Thus the conditional covariance is the covariance of the error terms in the forecasting model of
Xt based on information available at time t and is itself a forecast of the covariance between ei,t+1
and ej,t+1. Clearly, a vector autoregressive (VAR) model is a convenient vehicle for constructing
the conditional covariance.

For future reference we also note that if zt is another random variable, then Covt(a+bxt+1, c+
dyt+1 + zt) = bdCovt(xt+1, yt+1).
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10.5.2.3 Pricing the Risk-Free Asset

Equation (10.33) holds for any asset, whether risky or risk free. But if the asset
is risk free, we can replace rt in the budget constraint by the risk-free rate r f

t−1.
Furthermore, rt+1 can be replaced in equation (10.33) by r f

t , which is known
at time t. Hence, Et(r f

t ) = r f
t and Covt((∆ct+1/ct), r f

t ) = 0. Equation (10.33)
therefore becomes

r f
t =

θ + σtEt(∆ct+1/ct)
1− σtEt(∆ct+1/ct)

. (10.34)

10.5.2.4 The No-Arbitrage Relation

Combining equations (10.33) and (10.34) yields the no-arbitrage equation

Etrt+1 = r f
t +

σt Covt((∆ct+1/ct), rt+1)
1− σtEt(∆ct+1/ct)

= r f
t + βσt(1+ r f

t )Covt

(
∆ct+1

ct
, rt+1

)
. (10.35)

The last term in equation (10.35) is the risk premium. Thus, an asset is risky
if for states of nature in which returns are low, the intertemporal marginal rate
of substitution in consumption, Mt+1 ≡ (βU ′t+1/U

′
t ), is high. Since Mt+1 will be

high if future consumption is low, a risky asset is one which yields low returns in
states for which consumers also have low consumption. This situation is typical
of what happens in a business cycle. For example, in the recession phase both
returns and consumption growth are low, whereas in the boom phase both are
high. This generates a positive correlation between the two and hence a positive
risk premium.

We note that we can also write equation (10.35) in terms of the excess return

Etrt+1 − r f
t = βσt(1+ r f

t )Covt

(
∆ct+1

ct
, rt+1 − r f

t

)
(10.36)

as

Covt

(
∆ct+1

ct
, rt+1

)
= Covt

(
∆ct+1

ct
, rt+1 − r f

t

)

due to r f
t being part of the information set at time t.

Taken together, the above results show that in an efficient market risky assets
are priced off the risk-free asset plus an asset-specific risk premium that reflects
macroeconomic sources of risk.

10.5.2.5 Pricing Nominal Returns

The analysis above assumes that all variables are measured in real terms, includ-
ing asset returns. This implies that there is a real risk-free asset. In practice,
the closest we get to a real risk-free asset is an index-linked bond. As even
this is not fully indexed it is not a true risk-free asset. In contrast, if we ignore
default risk, there are nominal risk-free bonds. A short-term Treasury Bill is an
example.
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In order to price nominal returns we need to modify our previous analysis a
little by restating the budget constraint in nominal terms as

Ptct +∆At+1 = Ptxt + RtAt,

where Pt is the price level,At is nominal wealth, andRt is a risky nominal return.
It can be shown that the Euler equation is now

Et
[βU ′t+1

U ′t
Pt
Pt+1

(1+ Rt+1)
]
= 1

or

Et
[βU ′t+1

U ′t
1+ Rt+1

1+πt+1

]
= 1, (10.37)

where πt+1 = ∆Pt+1/Pt is the rate of inflation. Noting that 1 + rt+1 = (1 +
Rt+1)/(1+πt+1), where rt+1 is the real risky return, equation (10.37) is identical
to (10.31).

However, the asset-pricing equation is different because we now have a nomi-
nal instead of a real stochastic discount factor. This is (βU ′t+1/U

′
t )(1/(1+πt+1)).

A Taylor series expansion of this gives

βU ′t+1

U ′t
1

1+πt+1
� β

[
1− σt∆ct+1

ct
−πt+1

]
.

The asset-pricing equation for a nominal risky asset is now

Et(Rt+1)

= θ+σtEt(∆ct+1/ct)+Etπt+1+σt Covt((∆ct+1/ct), Rt+1)+Covt(πt+1, Rt+1)
1−σtEt(∆ct+1/ct)−Etπt+1

.

(10.38)

For a nominal risk-free asset it is

Et(Rf
t+1) =

θ + σtEt(∆ct+1/ct)+ Etπt+1

1− σtEt(∆ct+1/ct)− Etπt+1
. (10.39)

And the no-arbitrage equation is

EtRt+1 = Rf
t + βσt(1+ Rf

t)
[

Covt

(
∆ct+1

ct
, Rt+1

)
+ Covt(πt+1, Rt+1)

]
. (10.40)

Thus the risk premium for a nominal risky asset involves two terms: the con-
ditional covariances between the nominal risky rate and consumption growth,
and between the nominal risky rate and inflation. If inflation is low when nomi-
nal returns are low, as happens in a business cycle caused by negative demand
shocks, then the inflation component of the risk premium will be positive.



�

�

“wickens” — 2007/10/15 — 13:08 — page 250 — #268
�

�

�

�

�

�

250 10. Asset Pricing and Macroeconomics

10.5.2.6 The Assumption of Log-Normality

An assumption that is widely used, due partly to its convenience and partly
to the fact that it is a reasonably good approximation, is that the stochastic
discount factor and the gross return have a joint log-normal distribution. We
note that a random variable x is said to be log-normally distributed if ln(x)
follows a normal distribution with mean µ and variance σ 2. If lnx is N(µ,σ 2),
then the expected value of x is given by

E(x) = exp(µ + 1
2σ

2),

and hence

lnE(x) = µ + 1
2σ

2.

As a result, equation (10.32) can be written as

1 = Et[Mt+1(1+ rt+1)]

= exp{Et[ln(Mt+1(1+ rt+1))]+ Vt[ln(Mt+1(1+ rt+1))]/2}.
Taking logarithms yields

0 = lnEt[Mt+1(1+ rt+1)]

= Et[ln(Mt+1(1+ rt+1))]+ Vt[ln(Mt+1(1+ rt+1))]/2

= Et[lnMt+1 + ln(1+ rt+1)]+ Vt[lnMt+1 + ln(1+ rt+1)]/2

� Et(lnMt+1)+ Et(rt+1)+ Vt(lnMt+1)/2+ Vt(rt+1)/2+ covt(lnMt+1, rt+1)

= 0. (10.41)

When the asset is risk free, equation (10.41) becomes

Et(lnMt+1)+ r f
t + 1

2Vt(lnMt+1) = 0. (10.42)

Subtracting (10.42) from (10.41) produces the no-arbitrage condition under log-
normality:

Et(rt+1 − r f
t )+ 1

2Vt(rt+1) = −Covt(lnMt+1, rt+1), (10.43)

where 1
2Vt(rt+1) is the Jensen effect, which arises because expectations are

being taken of a nonlinear function, and as E[f(x)] ≠ f[E(x)] unless f(x)
is linear.

If Mt+1 = β(U ′(ct+1)/U ′(ct)), then

lnMt+1 � −(θ + σt∆ ln ct+1). (10.44)

The no-arbitrage condition can now be written as

Etrt+1 − r f
t + 1

2Vt(rt+1) = σt Covt(∆ lnCt+1, rt+1). (10.45)

This may be compared with equation (10.36), which does not assume log-
normality.



�

�

“wickens” — 2007/10/15 — 13:08 — page 251 — #269
�

�

�

�

�

�

10.6. Asset Allocation 251

Multi-Factor Models. There is a more general way of expressing asset-pricing
models: namely, as multi-factor models. If the stochastic discount factor is
written as

Mt+1 = a+
∑
i
bizi,t+1,

then the no-arbitrage condition becomes

Etrt+1 − r f
t = −(1+ r f

t )Covt(Mt+1, rt+1)

= −(1+ r f
t )
∑
i
bi Covt(zi,t+1, rt+1). (10.46)

For example, CAPM assumes that there is a single stochastic discount factor
Mt+1 = σt(1 + rm

t+1), where rm
t+1, the return on the market, is the single fac-

tor; C-CAPM assumes that there is a single stochastic discount factor given by
Mt+1 = β(U ′t+1/U

′
t ) � β[1 − σt(∆ct+1/ct)] and so consumption growth is the

single factor. Thus, for σt = σ , a constant,

zt+1 =

⎧⎪⎪⎨
⎪⎪⎩
rm
t+1, CAPM,

∆Ct+1

Ct
, C-CAPM.

Assuming log-normality and that

lnMt+1 = a+
∑
i
bizi,t+1,

the asset pricing relation is

Et(rt+1 − r f
t )+ 1

2Vt(rt+1) = σt Covt(lnMt+1, rt+1)

= σt
∑
i
bi Covt(zi,t+1, rt+1). (10.47)

Equations (10.46) and (10.47) are known as multi-factor affine models (affine
means linear). In practice in finance, often the factors are not chosen to sat-
isfy general equilibrium pricing kernels like the intertemporal marginal rate of
substitution but are determined from the data.

10.6 Asset Allocation

We have said that the theory above applies to any asset. If there are several
assets in which to hold financial wealth, we must consider in what proportion
each asset is to be held in the portfolio. This is the problem of asset allocation
or portfolio selection. We begin by examining the case of two assets: a risky and
a risk-free asset.

Again the only change that we need to make to the model is to the budget
constraint. Let the stocks of risky and risk-free assets be at and bt , respectively,
then the budget constraint can be written

ct + at+1 + bt+1 = xt + at(1+ rt)+ bt(1+ r f
t−1).
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If we define Wt = at + bt and the portfolio shares as wt = at/Wt and 1−wt =
bt/Wt , then the budget constraint can also be written as

ct +Wt+1 = xt +Wt[1+ r f
t−1 +wt(rt − r f

t−1)]

= xt +Wt(1+ rp
t ),

where rp
t = r f

t−1+wt(rt−r f
t−1) is the return on the portfolio. The problem now

is to maximize Vt with respect to {ct+s , at+s+1, bt+s+1; s � 0} or equivalently
{ct+s ,Wt+s+1,wt+s+1; s � 0}.

Using previous results, the first-order conditions are

∂Vt
∂ct

= U ′t − βEt[U ′t+1(1+ rp
t+1)] = 0

and

∂Vt
∂wt+1

= −βEt
[
∂Vt+1

∂ct+1

∂ct+1

∂wt+1

]
= 0

= −βEt[U ′t+1Wt+1(rt+1 − r f
t )] = 0.

The first condition is the same as before except that rp
t+1 replaces rt+1. Thus

the consumption/savings decision is unchanged, except that it is now based on
the portfolio return. From the budget constraint, Wt+1 is determined by time t
variables, hence the second condition can be written as

Et[U ′t+1(rt+1 − r f
t )] = 0. (10.48)

We note that

U ′t+1 = U ′{xt+1 +Wt+1[1+ r f
t +wt+1(rt+1 − r f

t )]−Wt+2}
� U ′∗t +Wt+1wt+1(rt+1 − r f

t )U
′′∗
t+1,

where we have used a Taylor series approximation about wt+1 = 0 and defined
U ′∗t = U ′(xt+1 +Wt+1[1+ r f

t ]−Wt+2). Equation (10.48) can now be written

0 = Et[U ′t+1(rt+1 − r f
t )]

� U ′∗t Et(rt+1 − r f
t )+Wt+1U ′′∗t+1wt+1Et(rt+1 − r f

t )
2,

and so the share of the risky asset in the portfolio is

wt+1 = Etct+1

Wt+1

Et(rt+1 − r f
t )

σtEt(rt+1 − r f
t )2
, (10.49)

where σt = −(Etct+1U ′′∗t+1/U
′∗
t+1) is the CRRA. The higher the proportion of total

wealth that is consumed, Etct+1/Wt+1, and the expected excess return, Et(rt+1−
r f
t ), and the lower the conditional volatility of the excess return, Et(rt+1− r f

t )2,
and the degree of aversion to risk, σt , the larger the share invested in the risky
asset is. If there were no risky asset, then in effect Et(rt+1 − r f

t ) = 0 and so
wt+1 = 0, i.e., the portfolio would be completely risk free.

The analysis can be generalized to many risky assets. In this case rt and wt
become vectors rt andwt with the share in the risk-free asset given by 1−�′wt ,
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where �′ = (1,1, . . . ,1). The solution has the same form as equation (10.49) and
is the vector of shares

wt+1 = σ−1
t Σ−1

t Et(rt+1 − �r f
t ),

where Σt is the conditional covariance matrix of risky returns.
The excess return on the optimal portfolio is given by pre-multiplying byw′

t ,

Et(r
p
t+1 − r f

t ) = w′
tEt(rt+1 − �r f

t ) = σtw′
tΣtwt = σtVt(rp

t+1),

where Vt(r
p
t+1) is the conditional variance of the portfolio return. It follows that

Et(r
p
t+1 − r f

t )
Vt(r

p
t+1)

= σt. (10.50)

Eliminating σt using equation (10.50) yields the excess return for each individ-
ual asset as

Et(rt+1)− �r f
t = σtΣtwt
= Et(rp

t+1 − r f
t )
Vt(rt+1)wt
Vt(r

p
t+1)

= Et(rp
t+1 − r f

t )
Covt(rt+1, r

p
t+1)

Vt(r
p
t+1)

. (10.51)

Using equation (10.50) we can also write this as

Et(rt+1 − �r f
t ) = σt Covt(rt+1, r

p
t+1). (10.52)

For the ith asset this becomes

Et(ri,t+1 − r f
t ) = σt Covt(ri,t+1, r

p
t+1). (10.53)

Equation (10.53) can be shown to be identical to equation (10.36) if r f
t = θ and

if

ct+1 = rp
t+1Wt+1, (10.54)

i.e., consumption is equal to the permanent income arising from wealth, as in
life-cycle theory.

It is instructive to consider the implications of this solution for expected
utility. The conditional expectation of the instantaneous utility function for
period t + 1 may be approximated by a second-order Taylor series expansion
about Etct+1 to give

EtU(ct+1) � U(Etct+1)+U ′tEt(ct+1 − Etct+1)+U ′′t Et(ct+1 − Etct+1)2

� U ′t
[
Etct+1 − σt

2
Vt(ct+1)
Etct+1

]
. (10.55)

Thus, expected utility is approximately a trade-off between expected con-
sumption and the expected volatility of consumption evaluated at marginal
utility.
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This can be rewritten in terms of returns. Since

Etct+1 = Wt+1Etr
p
t+1,

Vt(ct+1) = W 2
t+1Vt(r

p
t+1),

from equations (10.50) and (10.55), the maximized value of EtU(ct+1) is
approximately

max EtU(ct+1) � U ′tWt+1

[
Etr

p
t+1 −

σt
2

Vt(r
p
t+1)

Etr
p
t+1

]

= U ′tWt+1

[
Etr

p
t+1 −

1
2

Et(r
p
t+1 − r f

t )
Etr

p
t+1

]

= U ′tWt+1

[
r f
t + ρt

(
1− 1

2(r f
t + ρt)

)]
,

where ρt is the risk premium:

ρt = βσt(1+ ft)Covt(∆ ln ct+1, r
p
t+1)

= βσt(1+ ft)Wt+1Vt(r
p
t+1).

An increase in risk causes the following change in expected utility:

∂{max EtU(ct+1)}
∂ρt

= U ′tWt+1

(
1− r f

t

2(r f
t + ρt)2

)
.

Although the sign is ambiguous, it is likely to be negative if r f
t and ρt are not

large. Usually, therefore, an increase in risk may be expected to reduce utility.

10.6.1 The Capital Asset-Pricing Model (CAPM)

The CAPM, due to Sharpe (1964), Lintner (1965), and Mossin (1966), is a special
case of equation (10.51) that assumes that every market investor is identical
and will therefore hold identical portfolios. As a result, rp

t+1 will also be the
market return rm

t+1. Thus

Et(rt+1 − �r f
t ) = Et(rm

t+1 − r f
t )

Covt(rt+1, rm
t+1)

Vt(rm
t+1)

.

For the ith risky asset we obtain

Et(ri,t+1 − r f
t ) = Et(rm

t+1 − r f
t )

Covt(ri,t+1, rm
t+1)

Vt(rm
t+1)

= Et(rm
t+1 − r f

t )βit, (10.56)

where βit is the market beta for asset i and is defined by

βit = Covt(ri,t+1, rm
t+1)

Vt(rm
t+1)

. (10.57)

Equation (10.56) therefore gives another expression for the risk premium.
It says that the expected excess return on a risky asset is proportional to the
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expected excess return on the market portfolio. The proportionality coefficient
beta varies over time and across assets. The beta for the risk-free asset is zero
and the beta for the market portfolio is unity. An implication of CAPM is that
an investor can hold one unit of asset i, or βit units of the market portfolio.
The expected excess return is the same in each case.

Our results also imply that CAPM can be given a general equilibrium inter-
pretation if we define βit as in equation (10.57) and equate the portfolio return
with the market return (rp

t+1 = rm
t+1) such that the market return satisfies

equation (10.54).

10.7 Consumption under Uncertainty

We now examine the implications of the presence of risky assets for the con-
sumption/savings decision. Previously we assumed perfect foresight and no
uncertainty so that the return on the financial asset in which savings were held
was given. We now assume uncertainty about the future and that savings are
held in a risky asset.

In analyzing consumption when the asset is risky we recall our earlier remark
that the same model may be used for determining consumption as is used for
determination of the price of the risky asset. Hence we use equation (10.35).
Solving this equation for consumption gives

Et
∆ct+1

ct
= Etrt+1 − θ
σt(1+ Etrt+1)

− Covt((∆ct+1/ct), rt+1)
1+ Etrt+1

(10.58)

� [Etrt+1 − σt Covt((∆ct+1/ct), rt+1)]− θ
σt

. (10.59)

Compared with the case of perfect foresight, the optimal rate of growth of con-
sumption under uncertainty involves an extra term in covt((∆ct+1/ct), rt+1).
As previously noted, this term is expected to be positive.

If households hold their savings in a risk-free asset with a certain return r f
t ,

then, as covt((∆ct+1/ct), r f
t ) = 0, from equation (10.58) we obtain

Et
∆ct+1

ct
� r

f
t − θ
σt

. (10.60)

Thus perfect foresight and investing in a risk-free asset produce exactly the
same result.

If we assume that r f
t � θ, then equation (10.35) may be written as

Etrt+1 − r f
t = σt covt

(
∆ct+1

ct
, rt+1

)
. (10.61)

The last term is the risk premium for the risky asset. It then follows that equa-
tions (10.59) and (10.60) are the same. This implies that in determining con-
sumption it does not matter whether we assume that investors hold the risk-
free asset or the risky asset as we have to risk-adjust the risky return in the
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equation for consumption. This is an important result as it suggests that we
may continue to work with the simpler assumption of perfect foresight in our
macroeconomic analysis. An alternative would be to evaluate all expectations
in the DGE model using risk-neutral probabilities. This would also eliminate the
need to take risk into account.

We note, however, that if we assume log-normality, then equation (10.58) is
replaced by

Et∆ ln ct+1 = r
f
t − θ
σt

+ 1
2σtVt(∆ ln ct+1).

Thus the expected rate of growth of consumption along the optimal path is pos-
itively related to the difference between the risk-free rate and the consumer’s
subjective rate of time preference, and it varies positively with the variance of
consumption growth (since σt is equal to the CRRA). If consumers are risk
averse, higher variability of consumption growth is accompanied by higher
expected consumption growth along the optimal path.

10.8 Complete Markets

The concept of a complete market is very important in finance as it determines
whether or not arbitrage opportunities exist, and in macroeconomics it deter-
mines whether risk sharing is possible, i.e., whether it is possible to fully insure
against risk.

If there is a contingent claim for each possible state of nature, and if there are
at least as many assets as states, then the price of each asset is uniquely defined.
If not, then there would be arbitrage possibilities. Unfortunately, in practice,
there are almost certainly more states of nature than contingent claims.

Let p(i) denote the price of the ith asset and let xi(s) denote the payoff in
state s. It follows that

p(i) =
∑
s
q(s)xi(s), i = 1, . . . , n.

Combining these equations for all n assets gives the matrix equation⎡
⎢⎢⎣
p(1)

...

p(n)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x1(1) · · · x1(S)

...
. . .

...

xn(1) · · · xn(S)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q(1)

...

q(S)

⎤
⎥⎥⎦ .

In vector notation with p̃ = (p(1), p(2), . . . , p(n))′,
p̃ = Xq̃.

There are three cases to consider.

1. The number of assets equals the number of states, i.e., n = S. Thus X is
a square matrix and can be inverted to give the contingent-claims prices
q(s) for each possible state of nature s = 1, . . . , S:

q̃ = X−1p̃.
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Given information on the market pricesp(s) and payoffsx(s), we can then
infer the state prices q(s). In this case markets are said to be complete
as market prices contain the complete information needed to obtain the
state prices uniquely. Another important implication is that the stochas-
tic discount factors m(s) are uniquely defined and are the same for all
investors.

2. The number of assets is greater than the number of states, i.e., n > S, and
so X is an n× S matrix. Therefore a unique inverse of X no longer exists,
only a generalized inverse. (Note: if X∗ is an inverse of X, then X∗X = I.
If there is a unique inverse, then X∗ = X−1; this requires X to be a square
matrix. But if X is n× S and n > S, then there is more than one X∗ matrix
that satisfies X∗X = I.) It follows that q̃ cannot be obtained uniquely from
p̃. In fact there are an infinite number of ways of deriving q̃, and hence an
infinite number of pricing functions or stochastic discount factors,m(s).

3. The number of states is greater than the number of contingent claims, i.e.,
S > n and so X is an n× S matrix. It follows that now no inverse of X
exists. It is not therefore possible to derive q̃ from p̃. This is the case that
is considered when pricing derivative securities in terms of the prices of
some underlying security.

10.8.1 Risk Sharing and Complete Markets

In practice, investors are heterogenous. Each investor is subject to different
sources of risk, called idiosyncratic risk. Investors may wish to diversify away
this risk. In actual markets, however, insurance opportunities are typically
imperfect. While there are numerous financial instruments that allow con-
sumers to insure against various types of idiosyncratic shocks, such instru-
ments typically do not allow for the complete diversification of idiosyncratic
risk. In contrast, in a complete-markets equilibrium, consumers would be able
to purchase contingent claims for each realization of such idiosyncratic shocks
and would therefore be able to diversify away all idiosyncratic risk.

We have seen that an implication of the existence of a complete set of con-
tingent claims is that consumers will value future random payoffs using the
same pricing function, i.e., they will have the same stochastic discount factors.
Suppose that consumer i invests in an asset that has a random payoff 1+ rt+1

at date t + 1. The Euler equation for the ith investor is

Et
[βiU ′(cit+1)
U ′(cit)

(1+ rt+1)
]
= 1,

where βi is the rate of time preference and cit the consumption of the ith
investor. This can be written as

Et[mi,t+1(1+ rt+1)] = 1,

where mi,t+1 = (βiU ′(cit+1)/U ′(c
i
t)).
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In a complete-markets equilibrium, the intertemporal marginal rate of sub-
stitution that is used to value future random payoffs will be the same for all
consumers, i.e., mi =mj for all i, j. Hence,

βiU ′i,t+1

U ′i,t
= βjU

′
j,t+1

U ′j,t
.

If all investors have the same rate of time preference β and the same utility
function U(·), then the growth rate of consumption for all consumers will be
the same:

ci,t+1

ci,t
= cj,t+1

cj,t
, for all i, j.

This implies that in a complete-markets equilibrium only aggregate consump-
tion shocks affect asset prices, and an individual income shock can be insured
away through asset markets.

To illustrate this, suppose that there are two consumers in an economy that
lasts for one period, and that each consumer i = A,B has the same utility
function U(C) = ln(C) but different income streams. In particular, consumer
A is employed when consumer B is unemployed, and vice versa. This gives two
(idiosyncratic) states. In state 1 the incomes are yA = y and yB = 0 with
probability π and in state 2 they are yA = 0 and yB = y with probability 1−π ,
where y > 0 is a constant. Each consumer maximizes E[ln(Ci)], the expected
value of utility from consumption. The problem is to find the consumption
allocations for each consumer in a complete contingent-claims equilibrium.

As there are two possible states of the world, we have two state prices q(1)
and q(2). Consumption and income for each consumer are indexed by the state
of the world. Thus, the budget constraints for consumers A and B are given by

q(1)CA(1)+ q(2)CA(2) = q(1)y,
q(1)CB(1)+ q(2)CB(2) = q(2)y.

Each consumer maximizes utility subject to these two budget constraints. The
Lagrangian for consumer A is given by

LA = π ln[CA(1)]+ (1−π) ln[CA(2)]+ λA[q(1)y − q(1)CA(1)− q(2)CA(2)].

The first-order conditions are

∂LA

∂CA(1)
= π
CA(1)

− λAq(1) = 0,

∂LA

∂CA(2)
= 1−π
CA(2)

− λAq(2) = 0.

Eliminating the Lagrange multipliers from these expressions gives the condition

CA(2)
CA(1)

= (1−π)q(1)
πq(2)

.
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Consumer B’s problem is similar to that of consumer A: the Lagrangian has the
same form, but the budget constraint is different. It follows that

CB(2)
CB(1)

= (1−π)q(1)
πq(2)

.

Hence
CA(2)
CA(1)

= C
B(2)
CB(1)

= c̄.
Suppose now that y , the income received by each consumer, varies with the

aggregate state of the economy. When the economy is in a boom, income is
high, and is ȳ with probability φ. When the economy is in a recession, income
is low—perhaps due to unemployment—and is y with probability 1−φ, where
y < ȳ . Thus there are now four states of the world:

state 1, yA = ȳ and yB = 0 with probability πφ;

state 2, yA = 0 and yB = ȳ with probability (1−π)φ;

state 3, yA = y and yB = 0 with probability π(1−φ);
state 4, yA = 0 and yB = y with probability (1−π)(1−φ).

The solution could be obtained from the first-order conditions as before. A
simpler way is to note that within a given aggregate state, consumers will equate
their marginal rates of substitution for consumption across the idiosyncratic
states. However, their marginal rates of substitution for consumption across
the idiosyncratic states will vary with the aggregate state. Thus, the earlier
conditions now become

boom state,
CA(2)
CA(1)

= C
B(2)
CB(1)

= c̄1,

recession state,
CA(4)
CA(3)

= C
B(4)
CB(3)

= c̄2,

where c̄1 and c̄2 differ because there are now different amounts of aggregate
resources in the economy depending on whether the economy is in a boom or
a recession.

Consider the possibility of insuring against aggregate versus idiosyncratic
income shocks. In the absence of aggregate shocks, the ratios of consumption
across the employment/unemployment states are equated for both consumers.
This is equivalent to insurance against idiosyncratic shocks. However, insurance
against variations in the aggregate economy is not possible. Hence, the ratios
of consumption across the employment/unemployment states vary with the
aggregate state of the economy.

Finally, consider the implications of a complete-markets equilibrium for asset
pricing. Suppose that consumer i = A,B invests in an asset that has a random
payoff 1+ rt+1 at date t + 1. The consumption/saving problem implies that at
the optimum, the ith investor sets

Et
[βiU ′(cit+1)
U ′(cit)

(1+ rt+1)
]
= 1.
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But we showed that in a complete-markets equilibrium, the intertemporal
marginal rate of substitution that is used to value future random payoffs will
be the same for all consumers, i.e., mA =mB. Hence,

βAU ′A,t+1

U ′A,t
= βBU ′B,t+1

U ′B,t
.

If all consumers have the same discount factor β and the same utility function
U(·), then their rates of consumption growth will be identical:

cA,t+1

cA,t
= cA,t+1

cB,t
.

We have shown, therefore, that in a complete-markets equilibrium only
aggregate consumption shocks affect asset prices and an individual income
shock can be insured away through asset markets. Although in practice we
do not have complete markets, this is an important concept in finance and in
macroeconomics.

10.8.2 Market Incompleteness

Even if markets are not complete and individuals have different marginal rates
of substitution, if there is a risk-free asset to which all consumers have access,
then, from equation (10.14), the expected marginal rates of substitution for
each investor will be the same and, from equation (10.60), the rates of growth
of consumption for all consumers will be the same (see Heaton and Lucas 1995,
1996).

The concept of market completeness is particularly relevant in an open econ-
omy as it implies that an economy can insure away its idiosyncratic risk by
holding a portfolio of internationally traded assets. In this case the marginal
rates of substitution are the same for all countries and all countries have the
same rates of growth of consumption. If, however, international markets are
incomplete, as countries have different marginal rates of substitution, then,
provided each country has access to an internationally traded real risk-free
asset at the same rate, expected marginal rates of substitution in each country
will be the same, as will consumption growth rates. The problem here is that
for the real risk-free rate to be the same in each country, PPP is required, and
we have already seen that this does not hold. We return to this point in our
discussion of foreign exchange markets.

10.9 Conclusions

Asset pricing has increasingly become associated exclusively with finance. We
have shown that it is, in fact, an important branch of economics, and plays
a central role in general equilibrium macroeconomics. In particular, we have
demonstrated that the same DGE model used to determine macroeconomic
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variables also provides a general equilibrium theory of asset pricing. We have
therefore unified macroeconomics and finance.

Assets are priced as the discounted value of future payoffs. The key difference
between finance and economics is in the choice of discount factor. In traditional
finance the risk free rate is often preferred; in general equilibrium economics
the marginal rate of substitutionMt+1 is used. We have shown that the connec-
tion between the two is that EtMt+1 = 1/(1+ r f

t ). In finance the risk-free rate is
sometimes supplemented with other variables, which are referred to as factors.
The problem is how to choose these factors. In economicsMt+1 is stochastic and
is based on the variables that determine marginal utility: typically consumption
growth and, for nominal returns, inflation. It will be shown in chapter 11 that,
due to the choice of utility function, other variables may also be used.

We have shown that where each household has the same discount factor,
markets are complete, implying that it is then possible to insure against risks
and that optimal consumption growth is the same for all households. This can
be extended to the open economy when we require that each country has the
same discount factor.

We have also shown that returns must satisfy a no-arbitrage condition—
otherwise markets would not be efficient and would allow unlimited profit-
making opportunities. Given the different characteristics of risky assets, no-
arbitrage is brought about by adjusting returns for risk, with the result that,
after being risk-adjusted, the expected values of all returns are the same. The
problem then is how to determine the risk premium for each asset. We have
shown that the answer to this problem is linked to the choice of the discount
factor. This presents a problem for traditional finance, as discounting using the
risk-free rate does not produce a risk premium; this is why additional factors
are sought.

The no-arbitrage condition provides a restriction often ignored in financial
econometrics, where univariate time-series methods are commonly used. Test-
ing this restriction enables asset-pricing theories to be evaluated. As it is nec-
essary to jointly model risky returns, the risk-free rate, and the stochastic dis-
count in order to take account of the no-arbitrage condition and model the
risk premium, multivariate methods are required. We discuss such tests for
particular financial markets in chapter 11.

Although it is necessary to take account of risk when determining asset
prices, we have argued that it may not be necessary to include risk premia in
stochastic macroeconomic relations. If a real risk-free rate exists, this may be
used instead of risky returns because, when they are used in macroeconomic
relations, risky returns should be risk-adjusted. An alternative is to evaluate
expectations using risk-neutral valuation. This also results in the use of the
risk-free rate.
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Financial Markets

11.1 Introduction

Having considered the general principles of asset pricing in the macroeconomy
in chapter 10, we now apply these to three key financial markets: the stock mar-
ket, the bond market, and the foreign exchange (FOREX) market. Each market
has specific features that need to be taken into account that make the analy-
ses very different. Their common feature is that they all satisfy the general
equilibrium pricing equation

Et[Mt+1(1+ ri,t+1)] = 1 (11.1)

and hence the no-arbitrage condition

Etri,t+1 − r f
t = βσt(1+ r f

t )Covt

(
∆ct+1

ct
, ri,t+1 − r f

t

)
, (11.2)

where rit is the real return on the ith risky asset, which is defined differently
for each market, r f

t is the real risk-free return, Mt+1 = (βU ′(ct+1)/U ′(ct+1)) is
the stochastic discount factor or marginal rate of substitution, U ′t is marginal
utility, ct is consumption, and σt is the coefficient of relative risk aversion.

In general,

1+ rt+1 = Xt+1

Pt
,

where Pt is the price of an asset at the start of period t and Xt+1 is its payoff at
the start of period t + 1. The payoffs define the different assets. For example,

1. for a stock which pays a dividend of Dt+1 and has a resale value of Pt+1

at t + 1, we have Xt+1 = Pt+1 +Dt+1;

2. for a Treasury Bill that pays one unit of the consumption good regardless
of the state of nature next period, Xt+1 = 1—the price is then Pt = 1/(1+
r f
t );

3. for a bond that has a constant coupon payment of C and can be sold for
Pt+1 next period, Xt+1 = Pt+1 + C ;

4. for a bank deposit that pays the risk-free rate of return r f
t between t and

t + 1, Xt+1 = 1+ r f
t—the price is Pt = 1;
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5. for a call option that gives the holder the right to purchase a stock at
the exercise price K at date T , the future payoff on the asset is XT =
max[ST −K,0], and Pt is the price paid to purchase the option.

For surveys of the general issues discussed here see Ferson (1995), Campbell
et al. (1997), Cochrane (2005), and Smith and Wickens (2002).

11.2 The Stock Market

11.2.1 The Present-Value Model

The traditional valuation model for equity is the present-value model (PVM)
(see Campbell et al. 1997, chapter 7). This assumes that the marginal rate of
substitution Mt+1 = 1/(1+ α), so that the expected rate of return to equity in
period t+1 based on information available in period t is Etrt+1 = α, where α is
a constant. In terms of the no-arbitrage condition, it is equivalent to assuming
that r f

t + ρt = α. In effect, therefore, it assumes that there is no risk premium,
or that the risk-free rate is constant. The price of equity is then

Pt = 1
1+αEt[Pt+1 +Dt+1] (11.3)

=
(

1
1+α

)n
EtPt+n +

n∑
i=1

EtDt+i
(1+α)i . (11.4)

Given the transversality condition limn→∞(1/(1 + α))nEtPt+n = 0, which
requires the average rate of the capital gain on the stock not to exceed the
discount rate α, we obtain Pt as the present value of discounted current and
future dividends:

Pt =
∞∑
i=1

EtDt+i
(1+α)i . (11.5)

Unsurprisingly, despite its widespread use, the evidence strongly rejects the
present-value model.

11.2.1.1 The Gordon Dividend-Growth Model

Gordon’s dividend-growth model is a variant of the PVM in which the expected
rate of growth of dividends is assumed to be constant but nonzero (Gordon
1962). If

gD = Et∆Dt+1

Dt
,

then

Pt = Dt
∞∑
i=1

(
1+ gD

1+α
)i

= Dt
α− gD

if α > gD.
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Thus the dividend-price ratio is

δt = DtPt = α− g
D.

In practice, the dividend yield is not constant, nor does it fluctuate about a
constant.

If dividends are a constant proportion of earnings Et , then Dt = θEt , where
θ is the dividend payout ratio. Earnings per share, et , are then defined as

et = Et
Pt
= 1
θ
Dt
Pt
= α− g

D

θ
.

It follows that the price of equity can now be written as

Pt = θEt
α− gD

.

Hence α, the return on equity in the long run, is related to average earnings per
share e through

α = gD + θe.
This has been used to decide whether to reinvest earnings or to make a div-

idend payout. If the dividend payout is θEt , then the amount reinvested is
(1− θ)Et . If earnings increase as a result of the investment by Et+1 −Et , then
the rate of return on the investment is

β = Et+1 −Et
(1− θ)Et =

gD

1− θ
as the rate of growth of earnings equals that of dividends. The decision
of whether to reinvest or make a dividend payout depends on the relative
magnitudes of α and β:

reinvest if β > α,

payout if β < α.

In practice, however, earnings per share have fallen in recent years and the
payout ratio is not constant.

11.2.1.2 Share Buybacks

Firms may distribute earnings through share buybacks as well as through dis-
tributing dividends. This has become increasingly common in recent years. This
may be attractive if the stock price is perceived to be low and if the firm has
surplus cash and a dearth of reinvestment incentives. When there are buybacks,
the definition of the rate of return on equity needs to be modified.

The price of a share Pt is the market value of a firm Vt divided by the number
of shares Nt :

Pt = VtNt .
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Likewise, the dividend per shareDt is total dividendsDT
t divided by the number

of shares:

Dt = D
T
t
Nt
.

As a result of share buybacks the number of shares will fall and hence the
price per share and the dividend per share will rise. (New issues and stock
splits would increase the number of shares and reduce the share price and the
dividend.) The rate of return to equity with buybacks r BB

t is given by

1+ r BB
t+1 =

Pt+1 +Dt+1

Pt

= (Vt+1/Nt+1)+ (DT
t+1/Nt+1)

Vt/Nt

= Vt+1 +DT
t+1

Vt
Nt
Nt+1

.

Hence, the relation between the rate of return to equity with buybacks and that
without (rt) is

r BB
t+1 � rt+1 − ∆Nt+1

Nt
.

Thus, although the rate of return to equity is correctly measured by the previous
formula using price per share and dividend per share, if it is measured using
the value of the firm and total dividends—as it is in most published data—then
the rate of change in the number of shares needs to taken into account.

11.2.1.3 Rational Bubbles

When stock prices rise for a period of time in a way that seems inconsistent
with the fundamentals, notably the expected behavior of dividends, and then
fall very quickly, much is heard about stock market bubbles. A recent example
of this phenomenon occurred in the late 1990s when the stock markets of the
world were said by some to have suffered a bubble in technology stocks. The
existence of a bubble is often interpreted to imply that asset prices are behav-
ing in a completely irrational way compared with what fundamentals would
suggest. However, it can be shown that bubbles may reflect perfectly rational
behavior.

The present-value model, equation (11.5), may be thought of as giving the
fundamentals solution of the stock price. Suppose there is another solution for
the stock price PB

t that also satisfies equation (11.3) and that differs from the
fundamentals solution by an amount Bt . Hence, PB

t is given by

PB
t = Pt + Bt
= 1

1+αEt(P
B
t+1 +Dt+1). (11.6)

Subtracting (11.3) from (11.6) gives the equation of motion that describes Bt :

Bt = 1
1+αEtBt+1. (11.7)
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If expectations are rational, then

Bt+1 = EtBt+1 + ξt+1,

where the innovation ξt+1 satisfies Etξt+1 = 0, the so-called martingale condi-
tion. (Roughly, a martingale is like a random walk in that the expected change
conditional on information at time t is zero, but it does not have the restriction
that the variance of the change is constant.) Thus, Bt would have the equation
of motion

Bt+1 = (1+α)Bt + ξt+1.

As α > 0, this is an explosive process. Bt will therefore soon start to dominate
the fundamentals, causing PB

t to explode too. Hence the notion that Bt is a
bubble.

We have established that bubbles are explosive, but the connotation of a
bubble is that it bursts, and suddenly disappears. The bubble obtained above
requires a single positive innovation ξt for it to start to grow. How, then, does
it disappear? This question reveals the main weakness of the concept of an
asset-price bubble. It takes some ingenuity to think of how to make the bubble
disappear and then reappear again some time in the (possibly distant) future.

One way is to assume that in each period there is a very small probability
that a bubble will begin, but once begun, a high probability that it will burst.
A Markov switching model can be used for this purpose. For example, suppose
that the expected asset price in t + 1 is a weighted average of the expected
fundamentals solution PF given by equation (11.5) and the bubble PB. We then
have

EtPt+1 = π(B)EtPF
t+1 + [1−π(B)]EtPB

t+1,

where π(B) is the conditional probability of a bubble existing in period t + 1
given that a bubble has (or has not) already started. Thus

π(B) =
⎧⎨
⎩π(0) if there is no bubble in period t,
π(1) if there is a bubble in period t.

We expect π(0) to be close to unity and π(1) to be close to zero. Thus π(B)
will change depending on whether or not a bubble is in existence. Other ways
of forming these probabilities can also be used. For example, if an asset price
starts to accelerate, then the probability of being in a bubble that could burst
shortly is much higher. See Campbell et al. (1997) for further discussion of stock
market bubbles.

11.2.2 The General Equilibrium Model of Stock Prices

According to the asset pricing theory developed in chapter 10 the general
equilibrium real rate of return to equity satisfies

Et
[
βU ′(ct+1)
U ′(ct)

(1+ rt+1)
]
= 1,
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and the no-arbitrage condition is

Etrt+1 − r f
t = βσt(1+ r f

t )Covt

(
∆ct+1

ct
, rt+1 − r f

t

)
, (11.8)

where σt = −(ctU ′′t /U ′t ) > 0 is the coefficient of relative risk aversion.

11.2.2.1 Equity Premium Puzzle

Unfortunately, the evidence does not support this theory either. It shows that
the expected excess return to equity greatly exceeds the right-hand side of equa-
tion (11.8) unless the value of σt is set very high—too high to be acceptable.
This is called the equity premium puzzle (see Mehra and Prescott 1985). The
problem is that Mt+1 = (βU ′(ct+1)/U ′(ct)) must be sufficiently volatile to off-
set the volatility in the excess return rt+1 − r f

t . And as ct+1/ct on its own is
not sufficiently volatile and hence neither is Covt((∆ct+1/ct), rt+1 − r f

t ), it is
necessary to make σ a large number. Only then is Mt+1 sufficiently volatile.

11.2.2.2 Responses to the Equity Premium Puzzle

The main response has been to choose a utility function that produces a larger
risk premium. Attention has focused on the assumption of time-separable
utility. An example of the alternative, time-nonseparable utility, is the habit-
persistence model, where Ut = U(ct, xt) and xt is the habitual level of
consumption.

Habit Persistence. One example is that of Abel (1990), who assumes that the
utility function can be written

Ut = (ct/xt)
1−σ − 1

1− σ ,

where xt is a function of past consumption, for example, xt = cδt−1. The
stochastic discount factor then becomes

Mt+1 = β
(
ct+1/xt+1

ct/ct

)−σ
.

The no-arbitrage condition now has an extra term:

Etrt+1 − r f
t = β(1+ r f

t )σt[Covt(∆ ln ct+1, rt+1)− Covt(∆ lnxt+1, rt+1)].

The rationale is that if Covt(∆ lnxt+1, rt+1) < 0 and is large enough, then it can
raise the size of the risk premium. There is, however, a logical problem. If xt is a
function of only past consumption (i.e., not of current consumption)—a reason-
able assumption given that we are trying to measure habitual consumption—
then this extra term must be zero as it is a conditional covariance and ∆ lnxt+1

is known at time t.
Constantinides (1990) has proposed a different habit-persistence utility

function: namely,

Ut = (ct − λxt)
1−σ − 1

1− σ . (11.9)



�

�

“wickens” — 2007/10/15 — 13:08 — page 268 — #286
�

�

�

�

�

�

268 11. Financial Markets

This was modified by Campbell and Cochrane (1999), who set λ = 1 and intro-
duced the concept of surplus consumption, defined as St = (ct −xt)/ct . If, for
example, xt = ct−1, then St is roughly the rate of growth of consumption. The
stochastic discount factor implied by equation (11.9) with λ = 1 is

Mt+1 = β
(
ct+1 − xt+1

ct − xt
)−σ

= β
(
ct+1

ct
St+1

St

)−σ
.

The no-arbitrage condition can then be written

Et(rt+1 − r f
t ) = β(1+ r f

t )σt Covt(∆ ln ct+1, rt+1)

+ β(1+ r f
t )σt Covt(∆ lnSt+1, rt+1).

The extra term involves ∆ lnSt+1, which can be interpreted as the proportion-
al change in the rate of growth of excess consumption. This will be much
more volatile than consumption itself and hence is likely to raise the risk pre-
mium significantly, provided—and it is a large proviso—the correlation between
∆ lnSt+1 and rt+1 is not negligible, which it may well be. Campbell and Cochrane
claim that the extra term, when measured by the unconditional covariance, does
increase the risk premium, but Smith et al. (2006) find that the term is not
significant when a conditional covariance is used instead of an unconditional
covariance. This shows the importance of the information structure in asset
pricing.

Kreps–Porteus Time-Nonseparable Utility. The previous models were based on
time-separable utility. An alternative approach is to assume time-nonseparable
utility. The Kreps–Porteus formulation of this is

Ut = U[ct, Et(Ut+1)].

Epstein and Zin (1989) have implemented a special case based on the constant
elasticity of substitution (CES) function

Ut = [(1− β)c1−1/γ
t + β(Et(U1−σ

t+1 ))
(1−(1/γ))/(1−σ)]1/(1−1/γ),

where β is the discount factor, σ is the coefficient of relative risk aversion,
and γ is the elasticity of intertemporal substitution. In the additively separable
intertemporal utility function the coefficient of relative risk aversion and the
elasticity of intertemporal substitution are restricted to be identical, but in the
time-nonseparable model they may differ.

Epstein and Zin show that maximizing Ut subject to the slightly different
budget constraint

Wt+1 = (1+ rm
t+1)(Wt − ct),

where rm
t+1 is the return on the market, gives

Et
{[
β
(
ct+1

ct

)−1/γ](1−σ)/(1−(1/γ))
(1+ rm

t+1)
1−((1−σ)/(1−(1/γ)))(1+ rt+1)

}
= 1.
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Thus the stochastic discount factor is

Mt+1 =
[
β
(
ct+1

ct

)−1/γ](1−σ)/(1−(1/γ))
(1+ rm

t+1)
1−((1−σ)/(1−(1/γ))).

Compared with time-separable utility, this has two additional degrees of free-
dom, which can boost the size of the risk premium. First, the power index is no
longer the coefficient of relative risk aversion, and is therefore free to take on
larger values. Second, Mt+1 now varies with the return on the portfolio.

Assuming log-normality, Campbell et al. (1997) have rewritten the no-
arbitrage condition equation as

Et(rt+1 − r f
t )+ 1

2Vt(rt+1)

= 1− σ
1− γ Covt(∆ ln ct+1, rt+1)+

(
1+ γ(1− σ)

1− γ
)

Covt(rm
t+1, rt+1). (11.10)

This may be compared with the corresponding equation under power utility
and log-normality, which is

Et(rt+1 − r f
t )+ 1

2Vt(rt+1) = σ Covt(∆ ln ct+1, rt+1). (11.11)

In equation (11.10) the coefficient of the first term on the right-hand side is
no longer the coefficient of relative risk aversion and there is a second term
that reflects the fact that the market return is an additional factor. The aim
in using equation (11.10) is to give more flexibility in the determination of the
risk premium. However, the empirical evidence is still equivocal on how well
this succeeds—see Smith et al. (2006) for a test of this model.

11.2.3 Conclusions

It would appear that, in the main, the evidence does not provide very strong
support for any of these models of the stock market. As a result, finance has
tended to use empirically driven models rather than theoretical models like
those we have discussed. The failure of these models is a challenge to economics
and finance. Nonetheless, we should still take the connections between macro-
economics and finance seriously, not least because financial evidence provides
a valuable new way of testing macroeconomic theories. This has led Cochrane
(2008) to conclude that the challenge to both macroeconomics and finance is
to understand what macroeconomic risks underlie the “factor risk premia” and
the average returns on the special portfolios employed in finance research.

11.3 The Bond Market

Bonds are a widely used vehicle for borrowing. Governments are the main
issuers of bonds and these dominate the bond market. Other bonds, such as
corporate bonds, are priced off these. We have assumed so far that all bonds
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are issued for a single period, but in practice they have different times to matu-
rity. Short-term government debt (maturities of a year or less) takes the form
of Treasury Bills and are held to maturity. Long-term government debt has a
range of maturities, varying from just over one year to up to fifty years, or even
for ever when they are known as perpetuities or consols. As previously noted,
it is still possible to buy debt issued by the U.K. government to finance the
Napoleonic Wars. Long-term debt is not necessarily held to maturity, but may
be bought and sold on secondary markets—as is equity on the stock market.

The value of debt at maturity is usually expressed in nominal terms. This
implies that at maturity it possesses two types of risk: the risk of default and
inflation risk due to the uncertainty about the real value of its purchasing power.
The risk of default is usually judged to be higher for corporate bonds than for
government bonds and is the main reason for the differences in their price.
Most long-term bonds also make annual, or more frequent, payments prior to
maturity. These are called coupons and are usually expressed as a proportion
of the maturity value (or face value) of the debt. Long-term bonds sold before
maturity also have price risk due to the uncertainty about their market price
prior to maturity. Recently, a few governments have started to issue index-
linked debt, where the maturity value (and any interim coupon payments) are
indexed to inflation. Our aim is to analyze how the market price of bonds is
determined. Factors affecting the price are the maturity value of the bond, the
time to maturity, the size of coupon payments, whether it is indexed or not, and
a variety of risks. The price is also affected by the short-term interest rate set as
part of monetary policy. This is the way in which monetary policy is conducted.
The transmission mechanism is through the short rate, which is set by policy,
affecting all bond prices via the term structure of interest rates.

There is a vast literature on the term structure of interest rates or, as it
is sometimes called, fixed-income securities: see, for example, Campbell et al.
(1997) and, more recently, Dai and Singleton (2003) and Singleton (2006).

11.3.1 The Term Structure of Interest Rates

The price Pn,t of a coupon bond with n periods to maturity is the expected
discounted value of the sum of all coupon payments and the value of the bond
at maturity. Thus

Pn,t = c
1+ Rc

n,t
+ c
[1+ Rc

n,t]2
+ · · · + 1+ c

[1+ Rc
n,t]n

= c
n∑
i=1

[1+ Rc
n,t]

−i + [1+ Rc
n,t]

−n

= c
Rc
n,t
[1− (1+ Rc

n,t)
−n]+ [1+ Rc

n,t]
−n, (11.12)

where c is the coupon paid each period expressed as a proportion of the face
value of the bond andRc

n,t is the nominal discount rate for the income stream on
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a bond with coupon c. Rc
n,t is better known as its yield to maturity. Without loss

of generality we have assumed that the payoff at maturity is 1, hence P0,t = 1.

We note that a perpetuity has n = ∞ and so

lim
n→∞Pn,t =

c
Rc
∞,t
,

and a zero-coupon, or pure discount, bond has c = 0, which we write as

Pn,t = 1

[1+ R0
n,t]n

.

This implies that the zero-coupon yield R0
n,t is approximately

R0
n,t � −

1
n

lnPn,t.

In practice, in each country usually very few discount bonds are in existence

at any point in time, and those that do exist have short maturities. But it is

possible to convert a coupon bond into the equivalent discount bond with the

same maturity. Again, there are only a limited number of coupon bonds, and

so it is not possible to construct a zero-coupon bond for each maturity at every

point in time just through converting coupon bonds. It is, however, possible

to use interpolation methods to fill in the gaps. In this way we can obtain the

equivalent zero-coupon yield to maturity for any maturity. This is called the

term structure of interest rates. The plot of these zero-coupon yields against

the time to maturity is called the yield curve.

11.3.1.1 Converting a Coupon into a Zero-Coupon Bond

An n-period coupon bond can be thought of as a collection of pure discount

bonds with payoffs in periods t to t +n− 1 that are equal to the coupon value

of the bond c, and in period t + n equal to the value of the bond at maturity

plus the coupon, 1 + c. To convert a coupon into a zero-coupon bond each of

these payoffs is discounted at the zero-coupon yield R0
n,t corresponding to that

maturity. Thus Pn,t defined in equation (11.12) may be reexpressed as

Pn,t = c
1+ R0

1,t
+ c
(1+ R0

2,t)2
+ · · · + 1+ c

(1+ R0
n,t)n

.

For each Pn,t , only R0
n,t is unknown. We solve for R0

n,t from Pn,t using the follow-

ing sequence. For a 1-period bond we know that R0
1,t = R1,t . This can be used to

calculate R0
2,t from the price of a 2-period bond. R0

1,t and R0
2,t can then be used
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to calculate R0
3,t from the price of a 3-period bond. The sequence can be written

P1,t = 1

1+ R0
1,t
→ R0

1,t ,

P2,t = c
1+ R0

1,t
+ 1+ c
(1+ R0

2,t)2
→ R0

2,t ,

P3,t = c
1+ R0

1,t
+ c
(1+ R0

2,t)2
+ 1+ c
(1+ R0

3,t)3
→ R0

3,t ,

...

Pn,t = c
1+ R0

1,t
+ c
(1+ R0

2,t)2
+ · · · + 1+ c

(1+ R0
n,t)n

→ R0
n,t.

In our subsequent analysis of bond prices we will use zero-coupon yields and
so, for convenience, we will omit the zero superscript and write R0

n,t ≡ Rn,t .

11.3.1.2 Forward Rates

It is possible to enter into an agreement in period t about the one-period rate
of interest to be applied during period t + n (i.e., between periods t + n and
t + n + 1). This is the forward rate, which is denoted by ft,t+n. The value in
period t+n of an investment of one unit in period t that is compounded using
the sequence of forward rates is

1
Pn,t

= (1+ ft,t) · · · (1+ ft,t+n−1).

The present value at time t of one unit in period t + n discounted using the
sequence of forward rates is

Pn,t = 1
(1+ ft,t) · · · (1+ ft,t+n−1)

=
n−1∏
i=0

1
1+ ft,t+i . (11.13)

It therefore follows that

1+ ft,t+n = Pn,t
Pn+1,t

or

ft,t+n = pn,t − pn+1,t

= −nRn,t + (n+ 1)Rn+1,t . (11.14)

Thus the forward rates at time t can be derived from the zero-coupon yields,
also at time t.

The no-arbitrage condition for forward rates is that

ft,t+n = Etst+n, (11.15)

i.e., that forward rates are unbiased predictors of future spot rates, where ft,t =
st . The plot of the forward rates ft,t+n againstn is called the forward-rate curve.
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When the forward-rate curve is rising it lies above the yield curve, and when it is
falling it lies below. Increasingly, the forward-rate curve is scrutinized by central
banks as it tells the bank the market’s view of future interest rate expectations.
A more formal discussion of forward rates is included in the discussion below
of the forward exchange rate and uncovered interest parity.

11.3.1.3 Swap Rates

An interest rate swap is an agreement to exchange the cash flows of bonds in
the future. The ownership of the bond is not exchanged, only the cash flows.
A “plain vanilla” interest rate swap exchanges cash flows between fixed and
variable (floating) interest rate bonds. The floating rate is commonly based on
the London Interbank Offer Rate (LIBOR) on one-month eurocurrency deposits
and is the sequence of these one-month forward rates until the end of the swap
agreement, in period t+n, say. The swap rate is the average of the bid and ask
(buy and sell) rates. In principle, the n-period fixed interest rate is the yield to
maturity on an n-period zero-coupon bond.

The value (or cost) of the swap, assuming no default risk, is the difference
between the present values of the two income streams, assuming that they have
the same face value at maturity. Thus the value of a swap is

V swap
n,t = Pfl

n,t − P fx
n,t,

where

Pfl
n,t =

n−1∏
i=0

1
1+ ft,t+i ,

P fx
n,t =

1
(1+ Rn,t)n .

In period t, to eliminate arbitrage opportunities V swap
n,t = 0. But during its life-

time its value may become positive or negative. The swap rate is the zero-
coupon yield obtained by equating P fx

n,t to Pfl
n,t at the time when the swap is

initiated. Since swap rates exist in the market and zero-coupon yields (a derived
yield) do not, swap rates can be used to construct the zero-coupon yields and
hence the yield curve. Furthermore, from equation (11.14), swap rates can be
used to calculate the forward rates.

11.3.1.4 Holding-Period Returns

The holding-period return is the nominal rate of return to holding a zero-
coupon bond for one period. hn,t+1 is the holding-period return on an n-period
bond between periods t and t + 1. It is calculated from

1+ hn,t+1 = Pn−1,t+1

Pn,t

= (1+ Rn−1,t+1)−(n−1)

(1+ Rn,t)−n .
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If pn,t = lnPn,t , then taking logs gives

hn,t+1 � pn−1,t+1 − pn,t = nRn,t − (n− 1)Rn−1,t+1.

The no-arbitrage condition for bonds is that, after adjusting for risk, investors
are indifferent between holding an n-period bond and a risk-free bond for one
period. Hence, approximately,

Ethn,t+1 = st + ρn,t,
where ρn,t is the risk premium on an n-period bond at time t. Noting that

st = r f
t = R1,t = − lnP1,t ,

the no-arbitrage condition may be written either as

Ethn,t+1 = nRn,t − (n− 1)EtRn−1,t+1 = st + ρn,t
or as

(n− 1)(EtRn−1,t+1 − Rn,t) = (Rn,t − st)− ρn,t, (11.16)

where Rn,t − st is called the term spread.
If the risk premium (called, here, the term premium) is omitted, equa-

tion (11.16) is known as the “rational expectations hypothesis of the term struc-
ture” (REHTS) (see Cox et al. 1981). There is, however, a vast amount of empirical
evidence that rejects the REHTS. This suggests that the term premium should
not be omitted.

11.3.1.5 The Yield Curve

The no-arbitrage condition, equation (11.16), is a difference equation. Using
successive substitution it can be rewritten as

Rn,t = n− 1
n

EtRn−1,t+1 + 1
n
(st + ρn,t)

= 1
n

n−1∑
i=0

Et(st+i + ρn−i,t+i). (11.17)

Consequently, the nominal yield to maturity is the average of expected future
short rates plus the average risk premium on the bond over the rest of its life.

The Fisher equation defines the one-period real interest rate rt by

rt = st − Etπt+1,

where πt is inflation. Hence

Rn,t = 1
n

n−1∑
i=0

Et(rt+i +πt+i+1 + ρn−i,t+i). (11.18)

Accordingly, three variables determine the shape of the yield curve: the real
interest rate, inflation, and the risk premium. If the real rate and inflation are
constant, the shape will only reflect the risk premium. The longer the time
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Figure 11.1. The U.S. yield curve, January 31, 2006.
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Figure 11.2. The U.K. yield curve, February 15, 2006.

to maturity, the greater the risk component. Hence the yield curve will slope
upwards. This is the “normal” shape of a yield curve. If inflation is expected to
increase in the future, then this will cause the yield curve to rise more steeply.
If inflation is expected to fall, then the yield curve will be flatter, and could even
have a negative slope, in which case it is said to be inverted. A hump-shaped
yield curve is usually due to an expected temporary increase in inflation.

To illustrate, figures 11.1 and 11.2 give the yield curves for the United States
and United Kingdom at the start of 2006. They have very different shapes. The
U.S. yield curve suggests that inflation is expected to increase in the short term,
then fall over the following five years. The U.K. yield curve is inverted, implying
an expected fall in inflation over time.

To give a further idea of the shape of the yield curve and of the orders of
magnitude of the risk premia arising from government and corporate bonds,
three spreads for November 20, 2002, are reported in table 11.1.

These are based on ten-year, two-year, and three-month government bonds
and representative corporate bonds for the United States, the United Kingdom
and the European Union. Two yield curve spreads can be calculated from these
data: the spread of the two-year over the three-month rate and the ten-year
over the three-month rate. These can be thought of for now as measures of
price risk for different maturities. Note that in each case this increases with
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Table 11.1. Bond spreads.

U.S. U.K. EU

Two-year term spread 0.6 −0.1 0.05
Ten-year term spread 2.7 0.6 1.3
Corporate spread 2.2 1.3 0.8

time to maturity. A measure of default risk is given by the spread of corporate
bonds over long-term ten-year government bonds. On this date the default risk
of corporate bonds was as large as the price risk for ten-year bonds. The yields
on corporate bonds are the cumulation of the three-month rate, the ten-year
spread, and the corporate spread. The data show that the United States was the
most risky investment environment for bonds, but this changes as the spreads
vary over time.

11.3.2 The Term Premium

We now consider how to specify the term premium. We focus on two ap-
proaches: the latent affine factor approach favored by finance, and the general
equilibrium model of risk. The two approaches differ in the choice of intertem-
poral marginal rates of return. The starting point for both is to express Pn,t as
the discounted value of Pn−1,t+1 when the bond has n− 1 periods to maturity.
Thus

Pnt = Et[Mt+1Pn−1,t+1] (11.19)

or

Et[Mt+1(1+ hn,t+1)] = 1.

For n = 1, the yield is known at time t, hence

EtMt+1(1+ st) = 1.

Assuming that Pn,t and Mt+1 have a joint log-normal distribution with pn,t =
lnPn,t and mt+1 = lnMt+1, taking logarithms of equation (11.19) gives

pnt = Et(mt+1 + pn−1,t+1)+ 1
2Vt(mt+1 + pn−1,t+1) (11.20)

= Etmt+1 + Etpn−1,t+1 + 1
2Vt(mt+1)

+ 1
2Vt(pn−1,t+1)+ Covt(mt+1, pn−1,t+1). (11.21)

Hence, as p0,t = 0,

p1,t = Etmt+1 + 1
2Vt(mt+1). (11.22)

Subtracting (11.22) from (11.21) and rearranging gives the no-arbitrage equa-
tion:

Etpn−1,t+1 − pn,t + p1,t + 1
2Vt(pn−1,t+1) = −Covt(mt+1, pn−1,t+1). (11.23)
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This can be rewritten in terms of yields as

− (n− 1)EtRn−1,t+1 +nRn,t − st + 1
2(n− 1)2Vt(Rn−1,t+1)

= (n− 1)Covt(mt+1, Rn−1,t+1),

and, since hn,t � −(n− 1)Rn−1,t+1 +nRn,t , as

Et(hn,t+1 − st)+ 1
2Vt(hn,t+1) = −Covt(mt+1, hn,t+1). (11.24)

This is the fundamental no-arbitrage condition for an n-period bond. The term
on the right-hand side is the term premium.

11.3.2.1 Affine Latent Factor Models of the Term Premium

We illustrate this method using a single-factor model and compare two widely
used formulations: the Cox–Ingersoll–Ross (CIR) model (Cox et al. 1985a,b) and
the Vasicek (1977) model. In a single-factor model we write pn,t , the log price,
as a linear function of the factor zt :

pn,t = −[An + Bnzt].
The coefficients differ for each maturity but are related in such a way that
there are no arbitrage opportunities across maturities. Below, we derive the
restrictions implied by this. The yield to maturity is

Rn,t = − 1
n
pn,t = Ann + Bn

n
zt

and the one-period risk-free rate is

st = −p1,t = A1 + B1zt.

In order to derive the restrictions on An and Bn we need to introduce an
assumption about the process generating zt .

The Cox–Ingersoll–Ross Model. Cox, Ingersoll, and Ross proposed a model of
the term structure that assumes that m = lnM is defined by

−mt+1 = zt + λet+1, (11.25)

zt+1 − µ = φ(zt − µ)+ et+1, (11.26)

where zt is unobservable but is assumed to be generated by the above autore-
gressive process in which et+1 = σ√ztεt+1 and εt+1 ∼ i. i.d.(0,1), i.e., the εt+1

are independently and identically distributed random variables with zero mean
and a unit variance. Thus Vt(et+1) = σ 2zt . We now evaluate equation (11.20)
using these assumptions, noting that

Et[mt+1 + pn−1,t+1] = −[zt +An−1 + Bn−1Etzt+1]

= −[zt +An−1 + Bn−1(µ(1−φ)+φzt)]



�

�

“wickens” — 2007/10/15 — 13:08 — page 278 — #296
�

�

�

�

�

�

278 11. Financial Markets

and

Vt[mt+1 + pn−1,t+1] = Vt[λet+1 + Bn−1et+1]

= (λ+ Bn−1)2Vt(et+1)

= (λ+ Bn−1)2σ 2zt.

Hence equation (11.20) becomes

−[An + Bnzt] = −[(1+φBn−1)zt +An−1 + Bn−1µ(1−φ)]+ 1
2(λ+ Bn−1)2σ 2zt

= −[An−1 + Bn−1µ(1−φ)]− [1+φBn−1 − 1
2(λ+ Bn−1)2σ 2]zt.

Equating terms on the left-hand and right-hand sides (i.e., the intercepts and
the coefficients on zt) gives the recursive formulae

An = An−1 + Bn−1µ(1−φ),
Bn = 1+φBn−1 − 1

2(λ+ Bn−1)2σ 2.

Using P0,t = 1 implies that p0,t = 0 and A0 = 0, B0 = 0. Starting with these
values we solve recursively for all An, Bn from these two formulae. For n = 1,
B1 = 1− 1

2λ
2σ 2 and A1 = 0. Hence

st = −p1,t = A1 + B1zt

= (1− 1
2λ

2σ 2)zt. (11.27)

The no-arbitrage condition, equation (11.23), is therefore

Etpn−1,t+1 − pnt + p1,t = Et[hn,t+1 − st]
= −[1

2Vt(pn−1,t+1)+ Covt(mt+1, pn−1,t+1)]

= −1
2B

2
n−1σ

2zt + λBn−1σ 2zt.

The first term is the Jensen effect and the second is the risk premium. Thus

risk premium = −Covt(mt+1, pn−1,t+1) = λBn−1σ 2zt.

Both are linear functions of zt . We note that if λ = 0 (i.e., if mt+1 = −zt and is
nonstochastic), then the risk premium is zero.

So far zt has been treated as a latent variable and assumed to be unobservable.
However, equation (11.27) shows that zt is a linear function of st , which is
observable. We can therefore replace zt everywhere by st . As a result, pn,t ,
Rn,t , and the risk premium can all be shown to be linear functions of st , and
the model becomes a stochastic discount factor (SDF) model with observable
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factors. Thus

pn,t = −[An + Bnzt]
= −

[
An + Bn

1− 1
2λ2σ 2

st
]
,

Rn,t = 1
n
[An + Bnzt]

= An
n
+ Bn
n(1− 1

2λ2σ 2)
st,

risk premium = λBn−1σ 2zt

= λBn−1σ 2

1− 1
2λ2σ 2

st.

This implies that the term structure has the same shape in all time periods, and
the curve shifts up and down over time due to movements in the short rate.
In practice, however, the shape of the yield curve varies over time, therefore
this single-factor CIR model is clearly not an appropriate model of the term
structure.

The Vasicek Model. Vasicek’s model of the term structure also uses equa-
tions (11.25) and (11.26) but assumes that et+1 = σεt+1. The analysis proceeds
as for the CIR model. The first difference is that

Vt[mt+1 + pn−1,t+1] = (λ+ Bn−1)2σ 2.

Equation (11.20) is now evaluated to be

−[An + Bnzt] = −[An−1 + Bn−1µ(1−φ)+ 1
2(λ+ Bn−1)2σ 2]− [1+φBn−1]zt.

Thus

An = An−1 + Bn−1µ(1−φ)+ 1
2(λ+ Bn−1)2σ 2,

Bn = 1+φBn−1.

Using p0,t = A0 = B0 = 0 we obtain B1 = 1 and A1 = 1
2λ

2σ 2. Thus

st = −p1,t = A1 + B1zt

= 1
2λ

2σ 2 + zt
and

pn,t = −[An + Bnzt]
= −[An − 1

2λ
2σ 2Bn]− Bnst,

Rn,t = 1
n
[An + Bnzt]

= 1
n
[An − 1

2λ
2σ 2Bn]+ Bnn st.
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From the no-arbitrage condition, equation (11.23), as Bn = (1 − φn)/(1 − φ),
we have

Etpn−1,t+1 − pnt + p1,t = Et[hn,t+1 − st]
= −1

2B
2
n−1σ

2 + λBn−1σ 2

= −1
2

(
1−φn
1−φ

)2

σ 2 + λ(1−φ
n−1)σ 2

1−φ ,

risk premium = λ(1−φ
n−1)σ 2

1−φ .

Thus, as in the CIR model, yields in the Vasicek model are linear functions
of the short rate, the shape of the yield curve is constant through time, and
the curve shifts due to changes in the short rate. But unlike the CIR model, the
risk premium depends only on the time to maturity and not on time itself. The
single-factor Vasicek model is, therefore, an even more unsatisfactory way to
model the term structure than the single-factor CIR model.

Multi-Factor Affine Models. One of the problems with these particular CIR and
Vasicek models is that they are single-factor models. A multi-factor affine CIR
model may be better able to capture both changes in the shape of the yield curve
over time and shifts in the curve. Dai and Singleton (2000) have proposed the
following multi-factor CIR model of the term structure:

pn,t = −[An + B′nzt], (11.28)

where zt is a vector of factors:

−mt+1 = �′zt + λ′et+1,

zt+1 − µ = φ(zt − µ)+ et+1,

et+1 = Σ
√
Stεt+1,

Sii,t = νi + θ′izt,

where � is a vector of ones, St is a diagonal matrix, εt+1 is i. i.d.(0, I), and φ
and Σ are both square matrices.

To illustrate, we consider the case where the factors are independent, so that
φ and Σ are diagonal matrices. Also we set Sii,t = zit . This makes the whole
model additive. As result, it can be shown that

pn,t = −[An +
∑
i
Bnizit],

−mt+1 =
∑
i
zit +

∑
i
λiei,t+1,

zi,t+1 − µi = φi(zit − µi)+ ei,t+1,

ei,t+1 = σi√zitεi,t+1.
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It then follows that

Etpn−1,t+1 − pnt + p1,t = −1
2

∑
i
B2
i,n−1σ

2
i zit +

∑
i
λiBi,n−1σ 2

i zit,

risk premium =
∑
i
λiBi,n−1σ 2

i zit.

Hence the risk premium is the sum of the risk effects associated with each
factor. Further, the short rate is a linear function of the factors:

st = −p1,t =
∑
i
(1− 1

2λ
2
i σ

2
i )zit.

Consequently, the yields and the term premia can no longer be written as a
linear function of only the short rate. Since every yield is a linear function of
the factors, if there are n factors, it would require the short rate plus n− 1
further yields to represent the factors. If there are more thann yields (including
the short rate), then the factors would not be a unique linear function of the
yields. And if there were less than n yields, no observable representation of the
factors would be possible, and so the model could not be reinterpreted as an
observable factor model.

In practice, it has been found that three factors are sufficient to represent the
yield curve. They seem to capture the shift or level, the slope, and any curva-
ture in the yield curve. The shift factor is by far the most important, explaining
about 90% of the variation in yields; the slope factor explains about 80% of the
remaining variation; the curvature factor never explains more than 5% of the
total variation. Taken together they explain about 98% of the total variation in
yields (see, for example, Marsh 1995). As shifts in the level of the yield curve
are due primarily to changes in the short rate, and this is largely an adminis-
tered rate, this evidence shows the importance of monetary policy in causing
changes in yields. The slope and curvature effects, which comprise about 8% of
the total variation in yields, may be attributed mainly to the effects of changes
in expected future inflation.

11.3.2.2 General Equilibrium Model of the Term Premium

In deriving the general equilibrium price of a bond we apply the asset pricing
theory of chapter 10 that was developed for nominal returns. All we need to
do in addition is to define the excess return for bonds appropriately. Assuming
log-normality, the no-arbitrage condition for bond yields can be written

Et(hn,t+1 − st)+ 1
2Vt(hn,t+1) = −Covt(mt+1, hn,t+1),

where for C-CAPM with power utility,

mt+1 = θ − σ∆ ln ct+1 −πt+1. (11.29)

Hence

Et(hn,t+1 − st)+ 1
2Vt(hn,t+1) = σ Covt(∆ ln ct+1, hn,t+1, )+ Covt(πt+1, hn,t+1),
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or, in terms of yields,

Et[nRn,t − (n− 1)Rn−1,t+1 − st]+ 1
2(n− 1)2Vt(Rn−1,t+1)

= −(n− 1)σ Covt(∆ ln ct+1, Rn−1,t+1)− (n− 1)Covt(πt+1, Rn−1,t+1).

As the coefficients are the same for each maturity, the term premia can only dif-
fer due to different conditional covariance terms. Estimates of this model have
been obtained by Balfoussia and Wickens (2007), who found that the coefficient
restrictions were rejected. This suggests that this particular general equilibrium
model of asset pricing does not hold for neither equity nor bonds.

11.3.3 Estimating Future Inflation from the Yield Curve

In formulating monetary policy it is becoming common for central banks to
extract estimates of future inflation from the yield curve. This either requires
an assumption about future real interest rates or, better still, the presence of a
yield curve for real yields (i.e., for index-linked yields).

From equation (11.18) the average rate of inflation over the next n periods is
given by

1
n

n∑
i=1

Etπt+i = Rn,t − 1
n

n−1∑
i=0

Et(rt+i + ρn−i,t+i). (11.30)

If we assume that Etrt+i = r for i > 0 and ignore the risk premium, we may
obtain a rough estimate of average future inflation as

1
n

n∑
i=1

Etπt+i = Rn,t − r . (11.31)

In other words, average future inflation over different horizons is given by the
shape of the yield curve less a constant. In general, therefore, average inflation
will differ depending on the horizon. These estimates could be improved a little
by making a simple correction for the term premia.

In principle, a better estimate of inflation may be obtained if indexed bonds
also exist. Denoting the yield on an n-period indexed bond by rnt , we may
construct a theory of the real term structure along the same lines as for nominal
yields. This would give us estimates of the real term premia, which we denote
by ρr

n,t , where the nominal term premium may be written as

ρn,t = ρr
n,t + ρπn,t,

and ρπn,t can be interpreted as the inflation risk premium. From equation (11.18)
we may write nominal and real yields as

Rn,t = 1
n

n−1∑
i=0

Et(rt+i +πt+i+1 + ρr
n−i,t+i + ρπn−i,t+i), (11.32)

rn,t = 1
n

n−1∑
i=0

Et(rt+i + ρr
n−i,t+i). (11.33)
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Subtracting (11.33) from (11.32) gives average inflation as

1
n

n∑
i=1

Etπt+i = Rnt − rnt − 1
n

n−1∑
i=0

Etρπn−i,t+i. (11.34)

If we ignore the last term, which involves the inflation risk premium, the esti-
mate of inflation is simply the difference between the nominal and the indexed
yields. This is called the “break-even” estimate of average inflation, and is
commonly used by central banks in countries where there are indexed bonds.
Strictly speaking, the break-even estimate should be corrected for the inflation
risk premium. For the United Kingdom in the 1980s and 1990s this was esti-
mated by Remolona et al. (1998) to be around 1%, a substantial size. More recent
evidence after inflation targeting was introduced indicates a lower inflation risk
premium. The lower rates of inflation so far in the 2000s would reduce the size
of this correction.

Finally, we note that it is common to use the term spread in econometric
models as an indicator of future economic activity. From equations (11.17)
and (11.34) this is

Rn,t − st = 1
n

n−1∑
i=1

Et(st+i + ρn−i,t+i)

= rnt + 1
n

n−1∑
i=1

Etπt+i+1 + 1
n

n−1∑
i=1

Etρπn−i,t+i. (11.35)

Thus, roughly, the term spread can be regarded as a predictor of the real yield
to maturity and average future inflation.

11.3.4 Conclusions

The theory of bond pricing, fixed-income securities, is the most highly devel-
oped of these three financial assets. Although in some ways pricing bonds is
the most straightforward of the three, it is also the most technically advanced
and it is the most successful. Its success lies in the widespread use of rela-
tive asset-pricing techniques rather than fundamentals pricing. Based on fun-
damentals, pricing bonds is little more successful than pricing equity or FOREX.
Recent advances in bond pricing have included attempts to combine the two
approaches and to search for a way of incorporating observable macroeconomic
factors in the explanation of term premia.

A distinctive feature of the bond market is its close connection with monetary
policy. This is both because monetary policy affects the term structure through
the short rate, the policy instrument under inflation targeting, and because the
term structure possesses information about the market’s view of future interest
rates, and its view of future inflation. Both are useful to policy makers.
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Figure 11.3. FOREX daily turnover ($ bn). Source: Financial Times, February 12, 2002.

11.4 The FOREX Market

Foreign exchange is required for transactions on the current account (for goods
and services) and the capital account (for financial assets). Although the nom-
inal exchange rate is determined by the total demand and supply of a cur-
rency, if exchange rates are flexible, then, in the absence of capital controls, the
extremely high degree of substitutability between domestic and foreign bonds
means that exchange rates are determined primarily by capital-account transac-
tions and not those on the current account. This does not necessarily imply that
there will be large net capital-account movements, as the rapid adjustment of
home and foreign rates of return expressed in the same currency in response to
an excess demand for or supply of currency may be expected to restore FOREX
market equilibrium almost instantly. This is what is implied by the uncovered
interest parity condition discussed below.

Nonetheless, the volume of FOREX activity has grown hugely in recent years.
Nearly half of the world’s FOREX activity takes place in London. Over 95% of
all U.K. FOREX transactions are associated with the capital account. By 2006
daily FOREX transactions equalled roughly the whole of the United Kingdom’s
annual GDP. A comparison of FOREX transactions in different countries in 2002
is given in figure 11.3.

11.4.1 Uncovered and Covered Interest Parity

11.4.1.1 Uncovered Interest Parity (UIP)

Uncovered interest parity is the key no-arbitrage condition in international bond
markets. Initially we consider 1-period bonds (a one- or a three-month Treasury
Bill). An investor has two choices: either invest in a domestic bill, which is vir-
tually risk free in the domestic currency in nominal terms, or invest in a foreign
bond, which is risk free in terms of the foreign currency but, due to exchange
risk, not in domestic currency terms.

We use the following notation in our discussion of FOREX: it is the one-period
nominal return in domestic currency; i∗t is the one-period return in foreign
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currency; and St is the domestic price of foreign exchange (the number of units
of domestic currency required to purchase one unit of foreign currency). An
increase in St implies a depreciation of domestic currency.

To compare the two investments we need to measure their payoffs in the same
currency. If the domestic investor has X units of domestic currency to invest in
the foreign bond, the investor must first convert this into foreign currency at
the current (or spot) rate St , then invest in the foreign bill, and finally convert
the proceeds back into domestic currency. Consider a U.S. investor considering
holding U.K. bills. Schematically, we have

$X → £
X
St
→ £

X
St
(1+ i∗t )→ $X

St+1

St
(1+ i∗t ).

The final payoff must be compared with investing in a domestic bill that gives
$X(1 + it). Ignoring risk, for the investor to be indifferent between the two
investments we require that the expected payoffs are the same, so that for any
X,

1+ it = Et
[
St+1

St
(1+ i∗t )

]
. (11.36)

This is called the uncovered interest parity (UIP) condition.
Taking logarithms, it can be reexpressed as

it = i∗t + Et
[
∆St+1

St

]

= i∗t + Et∆st+1, (11.37)

where s = lnS. This can be interpreted as saying that if the domestic exchange
rate is expected to depreciate (Et∆st+1 > 0), then investors need to be compen-
sated for holding the domestic bond by receiving a higher rate of return on the
domestic than the foreign bond.

UIP also implies that domestic and foreign bonds are perfect substitutes and
so, when their rates of return are expressed in the same currency, they are
equal. If this were not so there would be an arbitrage opportunity. One could
borrow at the lower interest rate and invest at the higher interest rate. This
would result in extremely large capital flows. We return to this point later when
we discuss the carry trade.

11.4.1.2 Covered Interest Parity

The Value of a Forward Contract. The forward contract for any asset—
including interest rates and FOREX—may be determined as follows. Using the
notation that Pt denotes the spot price of an underlying asset, that Ft,T is the
forward (or futures) price at t for delivery of the underlying asset at T , and
that r f is the risk-free rate (which is assumed to be constant), we consider two
portfolios:
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1. A long position in the forward contract. At time T this involves paying
Ft,T for the asset and selling it for PT . This yields a profit at time T of

π1(T) = PT − Ft,T .

2. A long position in the underlying asset and a short position in the risk-free
asset. This involves borrowing Pt at the rate of interest r f to purchase the
asset at date t and paying back the amount er

f(T−t)Pt at date T by selling
the asset for PT . This yields the profit

π2(T) = PT − er
f(T−t)Pt.

The expected profits from the two investment strategies must be equal, other-
wise an arbitrage opportunity would exist. If the profit from holding portfolio 2
were greater than that from holding portfolio 1, then the investor could borrow
to purchase the underlying asset at t, and short (sell) the forward contract. At
time T , the investor could close out the position in the forward contract and
receive Ft,T . The profit would be Ft,T − er

f(T−t)Pt , which, by assumption, would
be positive. Thus the investor would have made a positive profit for an outlay
of zero. To rule this out, we require that the expected profits are equal, implying
that

EtPT − Ft,T = EtPT − er
f(T−t)Pt.

From this we can obtain the forward price in terms of information available at
time t as

Ft,T = er
f(T−t)Pt.

Thus the value of the forward contract in period t, the date when it is initiated,
is

π(t) = Pt − e−r
f(T−t)Ft,T = 0.

For any other period s (T > s > t) the profit π(s) could of course be zero,
positive, or negative.

In the case of FOREX the two investment opportunities are as follows:

1. Invest one unit of domestic currency by buying a domestic risk-free asset
with nominal return i. The risk-free payoff in period T is ei(T−t). This is
in terms of domestic currency.

2. Invest in a foreign asset whose nominal return i∗ is risk free in terms of
foreign currency but not in terms of domestic currency.

Purchase of the foreign asset can only be made in foreign currency and so,
in order to buy the foreign asset, the investor must first convert the unit of
domestic currency into foreign currency. If the spot exchange rate is St (i.e.,
the price of one unit of foreign currency in terms of domestic currency), then
the investor receives 1/St units of foreign currency. The total payoff in foreign
currency is therefore (1/St)ei

∗(T−t). To find the payoff in terms of domestic
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currency it is necessary to convert it at the spot rate prevailing in period T . The
payoff in terms of domestic currency is therefore (ST /St)ei

∗(T−t).
The UIP condition is the no-arbitrage condition obtained by equating the

expected payoffs (expressed in domestic currency) for the two investments.
This gives

ei(T−t) = Et
[
ST
St

ei
∗(T−t)

]

or

St = e−(i−i
∗)(T−t)EtST . (11.38)

Thus the spot exchange rate in period t is determined by the discounted
expected future spot rate ST , where the discount rate is i− i∗. Taking loga-
rithms of equation (11.38) and setting T = t + 1 gives equation (11.37) once
more.

As ST is unknown at time t, the foreign investment above will be risky even
though the payoff in foreign currency terms is not risky. An alternative to con-
verting the proceeds of the foreign investment using the spot exchange rate at
time T is to buy a forward contract at time t. This guarantees the exchange rate
at which the conversion back into domestic currency takes place.

Let Ft,T denote the forward exchange rate at date t for delivery at T > t.
The payoff in domestic currency terms from the foreign investment is now
(Ft,T /St)ei

∗(T−t). As Ft,T is known at time t this is a certain payoff. The no-
arbitrage condition is now obtained by equating the payoffs from the invest-
ments in the domestic asset and in the foreign asset, where conversion takes
place using the forward rate. Hence

ei(T−t) = Ft,T
St

ei
∗(T−t),

which gives the forward rate for foreign exchange as

Ft,T = Ste(i−i∗)(T−t). (11.39)

Equation (11.39) is called the covered interest parity condition.
If interest rates are time-varying, then taking logarithms of equation (11.39)

for T = t + 1 gives

ft = st + it − i∗t ,
where ft = lnFt,t+1. If we rewrite the UIP, equation (11.37), as

Etst+1 = st + it − i∗t , (11.40)

it follows that

ft = Etst+1. (11.41)

The forward rate is therefore the market’s forecast of next period’s exchange
rate. Equation (11.41) is not the correct no-arbitrage condition, however, unless
investors are risk neutral. We return to this point later.
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For T > t + 1 we use the yields on domestic and foreign zero-coupon bonds
with maturity T − t as the interest rates. Thus,

lnFt,T = st + RT−t,t − R∗T−t,t
and lnFt,T = EtsT .

11.4.1.3 Implications of UIP for the Exchange Rate

Equation (11.40) is a forward-looking difference equation for st :

st = Etst+1 + i∗t − it. (11.42)

Solving this forwards gives

st =
∞∑
k=0

Et(i∗t+k − it+k). (11.43)

Consequently, the spot exchange rate is the sum of all expected future interest
differentials—and not just the current differential i∗t − it .

Equation (11.43) has an important implication for monetary policy. Under
inflation targeting, in which the monetary authority controls interest rates, if
there is an unanticipated increase in the domestic interest rate, domestic cur-
rency appreciates. By how much depends on the market’s view on how long
the interest differential will last. An increased differential lasting one year will
cause the spot exchange rate to increase by twelve times more than if the dif-
ferential is expected to last only one month. This makes the effectiveness of
monetary policy in an open economy more uncertain than is generally realized.

We also note that if the market expects interest rates to change at some point
in the future, perhaps due to monetary-policy announcements or hints at future
policy, then the spot exchange rate will change today. If, when the time in the
future arrives, there is no change in interest rates, then the exchange rate will
return to its original level. Subsequently, looking back on the data, it might
appear that the market had behaved irrationally, but, given its expectation,
which turned out to be false, the market had actually behaved quite rationally
throughout. This is known as a peso effect after a notorious episode involving
the Mexican peso in the mid 1970s. For many years this had traded at a dis-
count to the U.S. dollar, i.e., the forward rate was less than the spot rate, in the
expectation that Mexico would soon have to abandon its policy of maintaining
a fixed rate against the dollar. The devaluation eventually occurred in 1976.

An alternative way of expressing the relation between the spot exchange rate
and interest rates is to use forward rates together with the result that the for-
ward interest rate is an unbiased forecast of the future spot rate. Thus, if we
rewrite the forward interest rate at time t for the spot rate at time t + k as it,t+k,
then

it,t+k = Etit+k.
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Hence, equation (11.43) can be written as

st =
∞∑
k=0

(i∗t,t+k − it,t+k). (11.44)

Moreover, because

st = Etst+n +
n−1∑
k=0

Et(i∗t+k − it+k), (11.45)

it follows that

Etst+n = st +
n−1∑
k=0

(it,t+k − i∗t,t+k). (11.46)

Hence, we can use the forward-rate curves together with UIP and the current
spot exchange rate to discover the market’s implied forecast of the future spot
exchange rate.

Alternatively, ignoring risk, as the yield to maturity on an n-period zero-
coupon bond satisfies

Rn,t = 1
n

n−1∑
k=0

it,t+k,

we can combine information about the term structure with the UIP condition
to provide a much simpler and more convenient expression for the implied
expected future spot exchange rate, namely,

Etst+n = st +n(Rn,t − R∗n,t). (11.47)

Our discussion of the determination of the exchange rate from the UIP con-
dition was based on the assumption that interest rates are exogenous. More
generally, interest rates may be endogenous—for example, if the monetary-
policy instrument is the money supply. In this case, the UIP condition becomes
a structural equation in the macroeconomic system and the exchange rate is
determined within the system, instead of by equations (11.42) or (11.43) alone.

11.4.1.4 Empirical Evidence on UIP

As UIP is so widely used in open-economy macroeconomics, it is perhaps worth
briefly considering some empirical evidence on it. See Lewis (1995) for a survey.

An implication of UIP is that

st+1 = ft + εt+1, (11.48)

where εt+1 = st+1−Etst+1 is an innovation (forecasting) error so that Etεt+1 = 0.
Another implication is that

∆st+1 = ft − st + εt+1, (11.49)

where ft − st is the forward premium. Surprisingly, estimates of equations
(11.48) and (11.49) typically give very different results: the coefficient on ft
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Figure 11.4. U.S. dollar–sterling log spot and log forward exchange rates.
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Figure 11.5. U.S. dollar–sterling log future spot and log forward exchange rates.
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Figure 11.6. U.S. dollar–sterling log change in spot rate and log forward premium.

in (11.48) is usually close to unity, as the theory predicts; but the coefficient
on ft − st in (11.49) is significantly different from unity and for certain time
periods and key currencies can even be significantly negative, which is a clear
rejection of the theory.
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Figure 11.7. Log spot against log forward U.S. dollar–sterling exchange rate.

One of the first tests of UIP was by Fama (1984) using regression analysis.
Much can be learned about the behavior of exchange rates and the performance
of UIP just by plotting the data. Figures 11.4–11.9 plot the FOREX data for the
U.S. dollar–sterling exchange rate. Although it appears that only one series is
plotted in figure 11.4, in fact there are two series: st and ft . We conclude from
this that st � ft . The difference can be seen more clearly from figure 11.5,
where we plot st+1 and ft . The intriguing feature here is that UIP would lead
us to expect that Etst+1 � ft and not that st � ft . Putting these two results
together we conclude that Etst+1 � st . Thus changes in st are not predictable.
st is therefore approximately a martingale (or a random walk if the variance
of the shock is constant) and hence is nonstationary. According to UIP, the
forward premium is the market prediction of the future change in the spot
rate. Figure 11.6 plots ∆st+1 and ft − st . The forward premium is clearly a very
poor predictor of the change in the spot rate. If st were indeed a random walk,
then the forecast error would be unpredictable from current information. This
seems to be what figure 11.6 is showing.

Another way to represent the data is through scatter diagrams. Figure 11.7
plots st against ft . The data lie almost exactly on a 45◦ line through the ori-
gin, indicating once more that st � ft . In figure 11.8 we plot st+1 against ft .
According to the UIP condition, equation (11.48), this too should be a 45◦ line
through the origin. We see that it is, but that the fit is far worse than in fig-
ure 11.7. Finally, we plot ∆st+1 and ft − st . According to the UIP condition,
equation (11.49), this should again be a 45◦ line through the origin. In fact, it
is clear that no line fits these data. And if we estimated a line it would have a
very poor fit.

Similar results hold for other currencies and other time periods. The results
of Mark and Wu (1998) reported in table 11.2 are based on monthly data
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Figure 11.8. Future log spot against current log forward U.S. dollar–sterling
exchange rate.
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Figure 11.9. Future change in log spot against current log forward premium U.S.
dollar—sterling exchange rate.

for 1980.1–1994.1 and for 1976.1–1994.1. They provide typical estimates of
the coefficient of the forward premium in equation (11.49). Standard errors
are in parentheses. Virtually all of the estimates are negative, and most are
significantly different from unity, their predicted theoretical value.

These results imply that

Et∆st+1 = λ(it − i∗t ),
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Table 11.2. Estimates of equation (11.49). (Source: Mark and Wu (1998).)

1976.1–1979.4 1980.1–1994.1 1976.1–1994.1

USD/GBP 1.25 (1.16) −2.42 (1.08) −1.52 (0.86)
USD/DEM −0.03 (1.85) −0.20 (0.95) −0.14 (0.89)
USD/YEN −1.97 (1.56) −2.67 (1.12) −2.53 (0.90)
GBP/DEM 0.46 (1.82) −0.98 (0.98) −0.60 (0.78)
GBP/YEN −3.62 (2.36) −4.55 (1.47) −4.26 (1.13)
DEM/YEN −0.90 (3.96) −1.31 (1.07) −0.76 (0.62)

with λ < 0 instead of λ = 1. This can be rewritten as

it = i∗t + Et∆st+1 +
(

1
λ
− 1

)
Et∆st+1

�

⎧⎨
⎩
i∗t + Et∆st+1

i∗t

⎫⎬
⎭ as Et∆st+1 � 0.

Hence, if λ < 0, then, if the cost of converting the proceeds from investing in
the foreign bond back into domestic currency is expected to increase (i.e., if the
exchange rate is expected to depreciate), the market sets the domestic interest
rate below both i∗t and i∗t +Et∆st+1 instead of equal to i∗t +Et∆st+1. It is therefore
better to hold the foreign bond. Conversely, if the exchange rate is expected to
appreciate, then the domestic return will be set so that it exceeds both i∗t and
i∗t + Et∆st+1. It is then better to hold the domestic bond. In other words, if the
market sets the domestic interest rate in this way, then the optimal investment
strategy implied by these estimates is to hold the bond with the highest interest
rate. Such a strategy is well-known in FOREX markets. It is called the “carry
trade.” In practice, investors in the carry trade are speculators who borrow in
the currency with the low interest rate in order to invest in the currency with
the high interest rate, thereby making a profit. The risk in this strategy is that
the exchange rate of the currency invested in will eventually depreciate or the
exchange rate in the currency borrowed in will appreciate, as predicted by UIP.

We therefore reach the interesting conclusion that UIP appears to hold if
we represent the theory by equation (11.48) but is decisively rejected if we
use equation (11.49). Why is this? One explanation is that the theory omits a
risk premium (see Mark 1985). We have shown that st is a nonstationary vari-
able, or behaves like one. And as st � ft , the forward rate must be nonsta-
tionary too. From the theory of cointegration, if the omitted variables from a
relation are stationary, then the estimates of the coefficients associated with
the nonstationary variables will not be greatly affected (technically, they will
remain super-consistent and hence be very accurate). If, however, there are
omitted variables in a model in which all of the variables are stationary, then
the estimates are likely to be biased—possibly severely, depending on the size
of the correlation between the included and omitted variables. This suggests
that if there is an omitted risk premium from the no-arbitrage equation for
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FOREX, then it is stationary and negatively correlated with the forward pre-
mium. This would explain why the estimate of the coefficient on the forward
rate in equation (11.48) is consistent with the theory but the estimate of the
forward premium in equation (11.49) appears to be heavily biased.

Many other explanations have been offered for these anomalous results (see,
for example, Lewis 1995) but there is still no consensus on their cause. We now
focus on the need to include a FOREX risk premium and how to formulate it.

11.4.2 The General Equilibrium Model of FOREX

The theory of asset pricing suggests that as investing in the foreign bond is
risky we should replace the UIP condition with the no-arbitrage condition

it + ρt = i∗t + Et∆st+1, (11.50)

where the natural interpretation of ρt is that it is the risk premium required to
compensate domestic investors for holding the foreign asset. We would there-
fore expect ρt to be nonnegative. However, ρt can also be negative. This is
because with FOREX the problem of risk is symmetric with respect to domestic
investors in a foreign bond and foreign investors in a domestic bond. The risk
for the domestic investor in holding the foreign bond is an unexpected appreci-
ation of domestic currency, which would result in a lower payoff than expected
for the foreign asset as measured in terms of domestic currency because domes-
tic currency would cost more in terms of foreign currency. But this would not
result in risk for the foreign holder of domestic bonds. The converse is also
true: namely, the risk for the foreign investor in domestic bonds is that foreign
currency would cost more. This is why ρt can also be negative.

Another way of looking at this is by expressing UIP from the point of view of
the foreign investor. Thus

i∗t + ρ∗t = it + Et∆s∗t+1,

where ρ∗t is the risk premium for the foreign investor and s∗t = −st . Hence,

it − ρ∗t = i∗t + Et∆st+1.

Finally, we note that if investors have identical attitudes to risk, i.e., if markets
are complete, then ρt = −ρ∗t . In other words, only if markets are complete do
we obtain the same UIP condition as for the domestic investor. If their attitudes
to risk are different, i.e., if markets are not complete, then ρt and ρ∗t will be of
opposite sign and different in absolute magnitude.

11.4.2.1 The Domestic-Investor Model

We begin our analysis of the general equilibrium model of the FOREX risk pre-
mium by considering domestic investors. We assume that interest rates and
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the rate of change of FOREX are jointly log-normally distributed. For FOREX the
generic no-arbitrage condition

Et(rt+1 − r f
t )+ 1

2Vt(rt+1) = −Covt(mt+1, rt+1)

therefore becomes

Et(st+1 − ft)+ 1
2Vt(∆st+1) = −Covt(mt+1,∆st+1), (11.51)

as

Et(rt+1 − r f
t ) = Et(i∗t +∆st+1 − it) = Et(st+1 − ft),

−ρt = 1
2Vt(∆st+1)+ Covt(mt+1,∆st+1),

Etst+1 = ft + ρt.
Hence the FOREX risk premium is −Covt(mt+1,∆st+1), and this arises from
uncertainty about the future spot exchange rate and its conditional covariance
with the discount factor mt+1. The higher the rate at which foreign returns
are discounted, the larger they must be, and hence the greater the exchange
depreciation required.

11.4.2.2 The Foreign-Investor Model

For the foreign investor, excess returns and exchange rates are inverted, or
reversed. Denoting foreign variables with an asterisk, and noting that s∗t = −st ,
the excess return is

r∗t+1 − rf∗t = it −∆st+1 − i∗t = −(st+1 − ft),
which leads to the no-arbitrage condition

Et(r∗t+1 − rf∗t )+ 1
2Vt(r

∗
t+1) = −Covt(m∗

t+1, r
∗
t+1),

where m∗ is measured in foreign currency. Hence,

−Et(st+1 − ft)+ 1
2Vt(∆st+1) = Covt(m∗

t+1,∆st+1). (11.52)

11.4.2.3 The Combined Domestic-and-Foreign-Investors Model

Since, in practice, both investors will be conducting FOREX trades, we combine
the two no-arbitrage conditions by subtracting (11.52) from (11.51) to obtain

Et(st+1 − ft) = −Covt[1
2(mt+1 +m∗

t+1),∆st+1], (11.53)

where there is now no Jensen effect. The discount factor here is the average
of the domestic and foreign investor discount factors. If we add the two no-
arbitrage conditions we have

Vt(∆st+1) = Covt[(mt+1 −m∗
t+1),∆st+1].

This implies that
mt+1 =m∗

t+1 +∆st+1 + ηt+1,
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where either ηt+1 ≡ 0 or Covt[∆st+1, ηt+1] = 0. If ηt+1 ≡ 0, then the foreign
investor’s discount factor, when expressed in the same currency, is the same as
that of the domestic investor. In other words, we have a complete market. In this
case, the domestic and foreign investors’ no-arbitrage conditions are identical,
and so both can be expressed as equation (11.51). If markets are incomplete,
then we should use equation (11.53).

11.4.2.4 The FOREX Risk Premium Based on C-CAPM

As the excess return to FOREX is a nominal return, the log stochastic discount
factor for C-CAPM is given by equation (11.29). The no-arbitrage condition for
the domestic investor—or the no-arbitrage condition under complete markets—
is

Et(st+1−ft)+ 1
2Vt(∆st+1) = σ Covt(∆ct+1,∆st+1)+Covt(πt+1,∆st+1). (11.54)

Thus FOREX risk for the domestic investor in a foreign bond arises from the
exchange rate being weak when domestic consumption is low or when domestic
inflation is low. In a complete market, the no-arbitrage condition for a foreign
investor in domestic bonds can be written as

−Et(st+1 − ft)+ 1
2Vt(∆st+1) = −σ Covt(∆c∗t+1,∆st+1)− Covt(π∗t+1,∆st+1).

Hence risk arises for the foreign investor for the same reason as for the domes-
tic investor, with the difference that the excess return to FOREX now has the
opposite sign.

Empirical evidence on this general equilibrium model of FOREX produces
similar results to those for equity and bonds: namely, the estimate of σ is very
high (see Wickens and Smith 2001). Moreover, the contribution of the inflation
term in the risk premium appears to be stronger than that of the consumption
term. This suggests that FOREX risk arises more from uncertainty about the
exchange rate due to unexpected movements in the rate of inflation than from
concern about consumption. This may be because most FOREX transactions
are undertaken by financial institutions as part of their hedging operations,
and these relate more to short-term real returns than to consumption by the
ultimate owners of their financial capital, be they shareholders or investors. A
further problem is that including a FOREX risk premium defined in this way
does not remove the previous problem with UIP as the forward premium still
has a negative, though less significant, coefficient. For an alternative approach
to modeling the FOREX risk premium using an affine factor pricing model, see
Backus et al. (1996).

11.4.3 Conclusions

The problem of providing an adequate theory of FOREX remains unresolved.
UIP suffers from the anomalous result that because the coefficient on the for-
ward premium has the wrong sign it is always best to hold the bond with the
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highest interest rate. The general equilibrium model for FOREX gives too low
a coefficient of relative risk aversion and does not remove the UIP anomaly. A
number of explanations have been given for the poor performance of UIP and
the general equilibrium model. These include the argument that expectations
are not rational, that there are peso effects, that expectations formation is part
of a learning process, and that there are threshold effects as arbitrage activ-
ity only takes place in FOREX markets when the interest differential is large
enough. In practice, none of these theories appears to be sufficiently strongly
supported by the evidence.

In our discussion of FOREX there is an implicit assumption that transactions
are associated with either trade in goods and services or with capital move-
ments. However, comparing the sizes of trade, of net capital movements, and
even of total capital with the huge volume of FOREX transactions shows that
something else must be involved too. Hedging operations and FOREX specula-
tion, which may be highly leveraged, are obvious omissions from our discussion.
Suppose, for example, that an investor expects the price of foreign exchange
in terms of domestic currency to increase by more than is predicted by the
forward exchange rate. The investor can speculate on this by entering into a
contract to purchase the foreign currency using today’s forward rate and con-
verting the currency back into domestic currency at the future spot exchange
rate. This gives a profit if the future spot rate is higher than the forward rate
and a loss if it is not. It is not, therefore, a riskless strategy.

Alternatively, the investor could buy call options on the foreign currency.
This gives the investor the right, but not the obligation, to buy the foreign
currency. If the exchange rate depreciates by more than the forward rate, then
the investor will exercise this right, but if it does not, then the option may be
allowed to expire unexercised. An attraction of this is that the maximum loss is
limited to the cost of the option, which is only a small fraction of the size of the
full contract. Another major factor is that the speculation is highly leveraged.
For any given sum committed to the contract, the investor’s command over
foreign currency, and hence over the associated potential profit, is a multiple
of 1/c higher than entering a standard forward contract, where 0 < c � 1 is
the cost of a call. The profit for each unit of currency is the difference between
the future spot rate and the forward rate less the cost of the call. As a result of
using options and leveraging, the size of the FOREX transaction will be greatly
increased.

Another example of a FOREX hedge is the use of currency swaps. Here own-
ership of the currency does not change, only the currency of the interest pay-
ments. Swaps may be used both as speculative instruments and as hedging
devices. Such purely speculative FOREX transactions will typically not involve
trade at all, nor need they be associated with the purchase and sale of nonfi-
nancial foreign assets. Moreover, they can be undertaken by third parties who
are based in completely different countries to those whose currencies are being
traded.
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All of this illustrates why there is a high level of FOREX transactions and why
macroeconomic fundamentals may not be an important factor, especially in the
short run.

11.5 Conclusions

The behavior of financial markets is crucial for dynamic general equilibrium
macroeconomic models. The intertemporal allocation of resources enables con-
sumption to be smoothed and financial markets to channel household savings
to borrowers: other households, firms, government, both home and abroad.
This requires well-functioning capital markets. In this chapter we have exam-
ined traditional models of financial markets in order to compare them with
general equilibrium models. In formulating general equilibrium models for the
stock, bond, and FOREX markets we have in each case used the generic theory
of no-arbitrage that was derived in chapter 10. This was then specialized to take
account of the particular features of each market. The problem in each case was
to derive the risk premium and to find out what the macroeconomic sources
of this risk were. For equity this was the uncertainty about dividend payments;
for bonds it was the need to apply the no-arbitrage condition simultaneously to
bonds of all maturities; and for FOREX we had to take into account the presence
of both domestic and foreign investors and hence whether markets are com-
plete or incomplete. Thus asset pricing, and the behavior of financial markets,
is central to macroeconomics.

Although we have looked at each of these markets separately, households,
firms, and government will, either directly or indirectly through third-party
investment managers, hold a portfolio of these assets. This requires an equally
important asset-allocation decision, the theory of which we touched on in
chapter 10.

Finally, we have commented on how well these general equilibrium theories
of asset pricing. The evidence seems to suggest that the theory is unable to
provide a satisfactory account of risk for any of the three markets, especially
in the short run, as, in each case, the theoretical risk premium turns out to be
small in practice. We noted that a large proportion of FOREX transactions may
be for purely speculative purposes, and not closely related to macroeconomic
fundamentals, especially in the short run. To a lesser extent, this may also be
true of stock- and bond-market transactions. Nonetheless, even if an asset price
deviates for a time from its fundamental valuation as derived from general equi-
librium theory, we still need to know what that fundamental valuation is as we
expect the asset price to fluctuate around it, or mean revert to the fundamental
over time. Asset pricing is, therefore, as much a challenge for general equilib-
rium macroeconomics as it is for finance, where it is currently a highly active
area of research. We have also shown that financial data provide another means
of testing macroeconomic theories in addition to the use of macroeconomic
data.
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Nominal Exchange Rates

12.1 Introduction

In our discussion of the open economy in chapter 7, and of pricing in chapter 9,
we treated the nominal exchange rate as exogenous, or given. We now examine
the case where the nominal exchange rate is freely floating, and hence endoge-
nous. We consider the determination of nominal and real exchange rates and
their behavior following shocks to the macroeconomic system. Having a fixed
or a floating exchange rate is a policy choice. We therefore examine the relative
merits of fixed versus floating exchange rates, particularly as this affects output
and inflation and the effectiveness of monetary and fiscal policy. For example,
it is widely thought that, compared with a fixed exchange rate, having a floating
exchange rate reduces the cost of macroeconomic shocks as it facilitates the
adjustment of its real exchange rate and its terms of trade, thereby enabling
the economy to return quickly to equilibrium. A contrary view is that because
exchange rates are often highly volatile, they amplify the effects of external
shocks to the domestic economy. A key factor in this is how prices and wages
are set, how flexible they are, and how much they are affected by exchange rate
changes.

The nominal exchange rate is the price of an asset: the price of one currency
relative to another. In chapter 10 we considered the general problem of pric-
ing assets. We showed that this entails a no-arbitrage condition that relates the
expected return on the risky asset to that on a risk-free asset. In chapter 11
we discussed the no-arbitrage equation for FOREX and showed that, under
risk neutrality, this is the UIP condition. We demonstrated that UIP provides
a theory of bilateral nominal-exchange-rate determination in which the spot
exchange rate depends on the current and future interest differentials between
two economies.

The macroeconomic problem is how these interest rates are determined. They
may be exogenously determined, as in inflation targeting under discretion (see
chapter 13); they may be endogenously determined, being set as the result of an
interest rate rule that depends on other macroeconomic variables; or they may
be the outcome of conducting monetary policy through money-supply targets.
Thus, UIP provides a key connection between the nominal exchange rate and the
rest of the economy, and is a standard relation in most modern open-economy
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macroeconomic models with a freely floating exchange rate. And since, in turn,
macroeconomic variables may be affected by the exchange rate, the problem is
one of general equilibrium.

The principal alternative to having a floating exchange rate is to have some
form of fixed exchange rate. An example is the Bretton Woods system in which
member countries pegged their currencies to the U.S. dollar and were able to
alter the parity only after agreement with the other members. Or a country
could be dollarized with a currency board implying, in effect, that it is using
the U.S. dollar as its currency. Or it could be part of a monetary union like the
euro area and hence share a common currency and monetary policy. Before
the Bretton Woods agreement most countries were part of the gold standard,
i.e., they fixed their exchange rates to the price of gold instead of to another
currency. Currencies could be exchanged for gold usually on application to the
central bank; this required central banks to hold sufficient gold reserves to meet
demand. Under floating exchange rates there is no need for a central bank to
hold exchange reserves or gold, except to clear daily accounts. There is also
an intermediate situation where the exchange rate is flexible but changes are
managed, perhaps in order to keep the exchange rate within a given band. In
this chapter we focus mainly on freely floating exchange rates.

DGE models have not been much used to analyze the exchange rate and so,
before embarking on this, we review international monetary arrangements since
1873 (i.e., the choice of exchange-rate system) and the main macroeconomic
theories of the exchange rate that were used previously. Each theory reflects
the international monetary arrangements that prevailed when they were popu-
lar. The aim is not just to explain the historical development of exchange-rate
models—although this is of interest—it is to help give a better appreciation of
modern theories, and why they emphasize different aspects of the economy
from the earlier theories.

In general equilibrium, the determination of any one (endogenous) variable
requires consideration of the whole macroeconomic model. Nonetheless, the
balance of payments, and how it is specified, is of central importance in the
determination of the nominal exchange rate. The various different models of
the exchange rate differ, in large part, in their implications for the balance of
payments. This, in turn, is related to whether the exchange rate is treated as an
asset, or the relative price of goods and services. Key assumptions are whether
the exchange rate is determined by the current or the capital account; whether
or not there are capital controls; and whether domestic and foreign bonds are
perfect substitutes. A further distinguishing factor is the assumed degree of
price and output flexibility.

Due to the very large flows of international capital, modern theories of a flex-
ible exchange rate treat it as an asset price and so assume that it responds
almost instantaneously to new information. This creates a considerable prob-
lem for macroeconomic models of the exchange rate because the frequency of
observation of macroeconomic data is very much lower than that for FOREX.
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Occasionally weekly or monthly macroeconomic data exist, but usually the data
are quarterly, or even annual. In contrast, FOREX data are available almost
continuously. As a result, macroeconomics can only deal with the longer-run
response of exchange rates to shocks, which may be very different from their
instantaneous response.

There is another problem for macroeconomics. Treating the exchange rate as
an asset price focuses attention on bilateral exchange rates. But when it comes
to discussing the relation between trade and the exchange rate, it is the effective
exchange rate—a trade-weighted average of bilateral rates—that is relevant. As
individual bilateral rates will typically respond somewhat differently from each
other, the composition of the effective exchange rate will affect its response,
which will be different again. Although it is usual in macroeconomic theory to
ignore this distinction, it should be borne in mind.

Reflecting the macroeconomic theories prevailing at the time, fixed-exchange-
rate models typically use the Keynesian IS–LM–BP framework. We examine a par-
ticular version, the “monetary approach to the balance of payments.” Floating-
exchange-rate models commonly assume uncovered interest parity due to the
accompanying removal of capital controls, but differ in their assumptions about
the flexibility of prices and output. We consider a number of models: a flexible-
exchange-rate version of the IS–LM–BP model; using just the uncovered interest
parity condition; the Mundell–Fleming model; the monetary model; the Dorn-
busch model; and a sticky-price version of the monetary model. None of these
models is a DGE model. Their usefulness is that they help in understanding the
considerably more complex Obstfeld–Rogoff redux DGE model and some of its
recent variants.

12.2 International Monetary Arrangements 1873–2007

If we look at the most bloody events of modern history, from the French Revo-
lution and the Terror, the great slump, the rise of the Nazis, the Second World
War and the holocaust, or to the 70-year Soviet tyranny, we find the misman-
agement of currencies among the main causative factors. Incompetent central
bankers are more lethal than incompetent generals.

William Rees-Mogg (The Times, December 1, 2003)

This remarkably strong statement provides ample justification for starting
our discussion of nominal exchange rates with a brief review of international
currency arrangements. Over the period 1873–2007 most countries have experi-
enced a number of different exchange-rate systems. These range from floating
against gold, to fixed exchange rates, and to a freely floating exchange rate;
moreover, currencies may be freely convertible into gold or into other curren-
cies, or they may not be convertible; and there may be controls on capital move-
ments, or capital may be allowed to move freely. The change from one system
to another was nearly always forced by circumstances: sometimes it was due
to war; sometimes to economic imperatives.
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Ideally, the exchange-rate system should permit a country to achieve its eco-
nomic growth and inflation objectives, to retain competitiveness, and to be able
to borrow and lend in international capital markets while maintaining a sustain-
able current account. The failure to attain any one of these may prove sufficient
reason to abandon an exchange-rate system.

12.2.1 The Gold Standard System: 1873–1937

Great Britain adopted the gold standard in 1717. Most other countries who
adopted it did not do so until after 1873. Previously they used a bimetallic sys-
tem involving gold and silver or, in the case of, for example, Austria, France,
and Prussia, just silver. The gold rushes in California and Australia in the 1840s
and 1850s increased the supply of gold sufficiently for it to be widely used as
the payments system of choice. For accounts of the gold standard see Cooper
(1982), Eichengreen (1991, 1996a,b), and Bordo and Eichengreen (1998). For the
period 1873–1914, the gold standard system (GSS) was in operation more or
less globally. Gold shipments were suspended during World War I, but coun-
tries resumed them afterwards, though at different times. The GSS was eventu-
ally abandoned by most countries in the years immediately prior to, or during,
World War II, and it was replaced by the Bretton Woods system.

The basic idea behind the GSS is that countries should settle their interna-
tional transactions in gold or silver. National currencies are convertible into
gold, but at a fixed price. In effect, therefore, currencies had fixed parities
against each other. Adjustment took place by flows of gold between countries.
A country having a balance of payments deficit with another country had to
send gold from its reserves to that country. Because the quantity of domestic
money supplied was tied to the gold reserves, this caused a reduction in the
money supply of the deficit country. As a result, interest rates rose and domes-
tic economic activity and the domestic price level contracted. This led to an
improved trade balance and consequent capital inflows, which together were
supposed to correct the balance of payments deficit.

For a long period of time the GSS system worked very well, especially for
some countries. For example, the United Kingdom, a world economic leader in
the latter half of the nineteenth century, had current-account deficits in only
four years in a hundred-year period. There are, however, two main problems
with the GSS.

First, as international economic activity grows, it is necessary to increase
the supply of gold. However, the supply of newly mined gold to the world is
limited, as gold is found in only a few countries. As a result of a shortage of
gold, the system required periodic increases in the price of gold in terms of all
currencies. This arbitrarily benefited some countries and harmed others, it was
disruptive of world trade, and it was inflationary as it increased national money
supplies. Worse still, some countries chose to hoard gold. This denied gold
to other countries and forced them to adopt “beggar-my-neighbor” policies to
promote exports or block imports. Other countries, due to lack of gold reserves,
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instead of borrowing gold by offering higher interest rates, chose to suspend
gold payments, thereby undermining trade. Reparations in the 1920s and 1930s
meant that Germany, a major trading nation, had to run a permanent trade
surplus. As this was at the expense of trade surpluses by other countries, these
countries were denied gold.

Second, and more important, the GSS had a tendency to generate economic
recession due to the reductions in output and the price level that were required
to correct a current-account deficit. As it took time for balance of payments
adjustment to occur, the required contraction in the domestic economy could
be of long duration and involve high and severely fluctuating levels of unem-
ployment. When the United Kingdom returned to the GSS after World War I
it did so at the prewar parity. This turned out to be too high and the United
Kingdom was forced to restore its competitiveness by deflationary policies that
reduced its price level. This was a prolonged process that was very harmful to
the U.K. economy. Together with German reparations, gold hoarding, economic
deflation, and tight monetary policy, notably in the United States, high interest
rates caused the severe recessions of the 1920s and the great depression of the
1930s. As a result of this interwar experience, rather than return to the GSS
after World War II, a new system was sought.

12.2.2 The Bretton Woods System: 1945–71

We have argued that the two main problems with the GSS were a lack of liquidity
to support rising economic activity and the lack of a satisfactory adjustment
mechanism for an economy in deficit. These are what the Bretton Woods system
aimed to correct, but it succeeded only in providing greater liquidity (see Bordo
1993; Bordo and Eichengreen 1993).

The Bretton Woods agreement was signed in 1944 and was participated in by
most of the leading Western economies from 1945. Under the Bretton Woods
system only the U.S. dollar remained on the gold standard. The price of the U.S.
dollar was fixed in terms of gold, all currencies were fixed in value against the
dollar, and all international transactions were settled in dollars. Exchange rates
were not completely fixed, but had a small margin of movement of 0.5%. The
advantage of the Bretton Woods system was that it was possible to increase
international liquidity by supplying more U.S. dollars. However, as the demand
for dollars increased, the supply of gold also had to increase.

The adjustment mechanism under Bretton Woods was improved by allowing
countries that had large and persistent balance of payments deficits to devalue
(i.e., to adopt a lower parity against the dollar). Most exchange parity realign-
ments were small, but occasionally they were large; for example, the devalua-
tions by the United Kingdom in 1949 and 1967 were 30% and 14%, respectively.
They were designed to improve competitiveness, thereby helping to speed up
the macroeconomic adjustment process and avoiding long periods of recession
and high unemployment. At the same time, countries with balance of payments
surpluses were expected to revalue their parity upwards. In practice few did,
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however, and so the burden of adjustment, instead of being shared between
countries, fell on the deficit countries alone.

Nonetheless, the system worked tolerably well for about twenty years. In most
countries both unemployment and inflation were low—far lower than in the fol-
lowing twenty years, when exchange rates floated. One of the reasons for the
system’s success was that most countries imposed controls on financial capital
movements. This reduced pressure on exchange rates, but meant that capital
was not being used where it reaped the highest return. This restricted interna-
tional development. With the removal of capital controls and the accumulation
of large financial resources in private hands it is much more difficult for a
country with limited reserves to successfully defend the parity of its currency.
In later years, when currencies were floating, capital mobility caused the capital
account of the balance of payments to dominate the current account.

Under the Bretton Woods system national monetary policy is assigned to
maintaining the fixed parity against the U.S. dollar. A member country therefore
has no scope for independent monetary policy. As a result, their domestic price
levels were tied to the U.S. price level, and their inflation rates were similar to
the U.S. inflation rate. This can only work, however, if the United States is able to
control its inflation. This requires the U.S. money supply to increase no faster
than is necessary to meet the world demand for dollars. One of the factors
that undermined the Bretton Woods system was a U.S. monetary expansion in
the late 1960s, partly to finance the Vietnam war. This increased U.S. inflation,
raised inflation in the Bretton Woods countries, reduced U.S. competitiveness,
and made many countries reluctant to hold dollars and prefer to hold gold
instead, which exacerbated an already existing gold shortage.

In order to improve its competitiveness (and to increase international liquid-
ity, and hence economic activity), in 1971 the United States decided to increase
the dollar price of gold, i.e., to devalue the dollar against gold. The dollar was
allowed to float against gold with the intention of fixing the price of gold again
as soon as the market revealed the appropriate rate. In the meantime all other
currencies were allowed to float against the dollar. In 1973, after two years in
which attempts were made without success to fix the dollar at a new gold price,
the Bretton Woods system was abandoned in favor of the generalized floating
of exchange rates by most countries.

12.2.3 Floating Exchange Rates: 1973–2007

After 1973 the former Bretton Woods countries adopted a number of different
flexible-exchange-rate regimes.

1. Pure floating: where the exchange rate is determined in the world foreign
exchange market without intervention by the domestic central bank.

2. Target zones: where the aim is to keep the exchange rate within a range
of values against a particular currency; the exchange-rate mechanism
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(ERM) was an example of this in which the reference currency was the
deutsche mark.

3. Currency unions: where a group of countries give up their national cur-
rencies and adopt a common currency that then floats freely against the
currencies of other countries—European Monetary Union (EMU) and the
introduction of the euro is the prime example of this.

4. Dollarization: where, in effect, a country adopts the U.S. dollar as its cur-
rency by converting its domestic currency at a fixed rate against the dollar.
As a result, it cedes all control over its exchange rate.

Under a fixed-exchange-rate system monetary policy is preassigned to main-
taining the exchange-rate parity. A crucial consequence of moving to a floating-
exchange-rate system is that a country must reformulate its monetary policy.
The exception under Bretton Woods was the United States, which had to con-
duct its monetary policy in such a way as to control its rate of inflation. After
the breakdown of Bretton Woods most other countries adopted a similar policy
to the United States. This consisted of trying to achieve a chosen constant rate
of growth for the money supply—a policy associated with Milton Friedman that
is called monetarism.

The adoption of monetarism was strongly criticized in many countries. It was
widely seen as abandoning the old methods of monetary policy and import-
ing U.S. ideas instead. This misguided criticism showed a fundamental lack of
understanding of the central implication of having a floating exchange rate,
namely, that it then becomes necessary to take responsibility for one’s own
monetary policy, however conducted. Continuing the old style of monetary pol-
icy would be equivalent to giving up a floating rate and choosing to peg against
the dollar as before. More relevant criticisms of monetarism are that many coun-
tries consistently missed their monetary growth targets by a large margin and,
as discussed in chapter 7, there was confusion over which monetary aggregate
to target: narrow money, which relates more closely to transactions, or broad
money, which includes a savings component as well as representing a general
measure of liquidity.

Observing that Germany had considerable success with monetary control
and was able to achieve a low inflation rate, European countries increasingly
tied their currencies to the deutsches mark in an attempt to emulate Ger-
man rates of inflation. This resulted in the ERM, in which the deutsches mark
was the anchor currency. Like the Bretton Woods system, member countries
expected to achieve the same inflation rate as the anchor country. The dan-
gers of allowing any single currency to become the benchmark were soon made
clear when German unification occurred in 1989. This resulted in huge fiscal
transfers from West to East Germany, and an increase in German government
debt which caused German interest rates to increase and the deutsches mark
to appreciate against the dollar. This presented the other ERM members with a
dilemma: should they also raise interest rates in order to maintain parity with
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the deutsches mark, even though this would harm competitiveness with the
rest of the world, or should they leave the ERM? France, for example, deciding
to stay in the ERM, had to raise overnight interest rates to astronomical levels.
Based on UIP, an expected overnight devaluation by 10% requires an increase
in annualized interest rates of 2500% as compensation. This is precisely what
happened in France in September 1992.

The United Kingdom, one of the last countries to join the ERM, was will-
ing to raise interest rates to only 15%. The markets therefore speculated on an
imminent large devaluation of sterling. In September 1992 the United Kingdom,
together with some of its main Scandinavian trading partners, left the ERM and
floated their exchange rates once more. Shortly after, following the success-
ful experience of New Zealand, the United Kingdom began experimenting with
inflation targeting and controlling interest rates directly.

Meanwhile, the experience with the ERM led its members to look for a bet-
ter monetary system. In 1999 they formed the EMU and a single currency, the
euro. The euro system also adopted an inflation target—the average rate of
inflation of member countries—and so allowed the euro to float against other
currencies. There is, however, a potential problem with having a single inter-
est rate set by the European Central Bank with the average euro area inflation
rate in mind. Countries with higher inflation than the average therefore have
negative real interest rates, while countries with lower inflation have positive
real interest rates. In other words, monetary policy is the opposite of what is
required in each case. High-inflation countries are encouraged to expand and
low-inflation countries to contract, thereby exacerbating the inflation differen-
tials between countries rather than eliminating them. The stability of the euro
system relies heavily on high-inflation countries losing competitiveness, which
causes a loss of demand for their output and hence reduces inflationary pres-
sures, and low-inflation countries gaining competitiveness, which would stimu-
late their economies and raise inflation. There is some evidence of this occurring
as Germany, a low-inflation country, is experiencing a trade-led expansion while
Italy, a high-inflation country, has a lower level of economic activity. We analyze
these issues in more detail later in chapter 13.

The main benefit of a floating exchange rate is that it allows a country to retain
its competitiveness. This is particularly important if prices and wages are inflex-
ible. If prices and wages are flexible, then there is less benefit to having a floating
exchange rate. The assumption behind EMU is that, within the euro area, eco-
nomic activity is best promoted by removing exchange-rate movements entirely.
The concern has been that European labor markets are not sufficiently flexible
to support this.

Another benefit of floating exchange rates is that they remove the need for
capital controls. If capital is used where it brings the best return, in princi-
ple, this should raise world economic activity as it would promote economic
growth in all countries through trade. One of the main reasons why a govern-
ment imposes capital controls is to sustain its exchange rates without having
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high interest rates. This often results in a country having an artificially low
interest rate compared with world rates. Although the government can then
borrow cheaply from its domestic capital markets, which benefits the taxpayer,
it creates a disincentive to save and is eventually likely to harm domestic growth
rate through a lack of savings, and hence investment.

One of the attractions of floating exchange rates over fixed, or even target
zones, is that they are best able to cope with the capital movements that accom-
pany an absence of capital controls. Moreover, if a country allows its exchange
rate to be determined by market forces, then there is no incentive for private
investors to speculate against a currency. Large speculative gains have usually
been made by private investors betting against a central bank that is trying to
maintain a particular level for the exchange rate but which has only limited
reserves of foreign assets with which to do so. An example of this was when
George Soros made billions of pounds sterling in 1992 as a result of the U.K.
government’s unsuccessful attempt to keep sterling in the ERM in the face of
massive international speculation.

Floating exchange rates are not without their problems too. One of the main
disadvantages is that they are subject to external shocks and, as they are an
asset, they may become volatile and disrupt domestic economic activity. More-
over, if domestic prices and wages are not flexible, then an appreciation could
harm competitiveness. Some countries have tried to contain the effects of exter-
nal shocks by managing their exchange rates within an exchange-rate band. In
practice, this has usually proved successful only when the external shocks are
not large, in which case the band is unnecessary.

Dollarization, or simply targeting the dollar, is of course a return to fixed
exchange rates and monetary dependence. It is not an attractive policy unless
a country’s economy is tied very closely to, or has converged with, that of the
United States. As this is extremely difficult to achieve and to sustain, it is proba-
bly only a matter of time before strains start to appear in the domestic economy.
Only countries with severe economic problems—for example, high inflation and
a low credibility on international financial markets that causes a large country
risk premium—are likely to be willing to swallow such strong medicine while
they put their economies in order. This would make inflation targeting more
viable than full dollarization.

With the removal of capital controls under floating exchange rates, the bal-
ance of payments is dominated by the capital account, and fluctuations in
exchange rates are dominated by capital-account movements. Some idea of the
order of magnitude of foreign exchange transactions was reported in chap-
ter 11. By 2006 daily FOREX transactions through London amounted to more
than half of the annual GDP of the United Kingdom. The United States had
a slightly lower figure. As the current account is about 10% of U.S. GDP, and
25% of U.K. GDP, this means that each trading day capital movements are over
1250 times greater than current-account transactions for the United States and
500 times greater for the United Kingdom. Unsurprisingly, in the absence of
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capital controls, the exchange rate is determined by the capital account and, in
particular, by interest rates. This is reflected in the specification of models of
floating exchange rates because the no-arbitrage equation for FOREX—the UIP
condition—replaces the balance of payments.

12.3 The Keynesian IS–LM–BP Model of the Exchange Rate

During the period of the Bretton Woods system the main macroeconomic model
in use was the IS–LM model. It was introduced by Hicks as a simple representa-
tion of Keynes’s “general theory” and was soon widely adopted. A key feature of
the IS–LM model is the assumption of fixed prices and wages. One of the most
important modifications to the IS–LM model was the addition of the Phillips
curve. This gave some flexibility to prices and wages and added a supply side
to the model. Previously, the IS–LM model was essentially just a demand-side
model. The resulting model, known as the Keynesian model, is familiar to most
of those who have taken an undergraduate course in macroeconomics.

Looked at from the perspective of DGE macroeconomic models, the IS–LM
model has a number of severe drawbacks. It lacks formal optimizing microe-
conomic foundations, it does not have an intertemporal framework, and, as
explained in chapters 1 and 2, it uses an incorrect equilibrium concept: namely,
flow rather than stock equilibrium. A putative justification for this is that the
IS–LM model deals with a period of time sufficiently short that the capital stock
remains unchanged. But this would mean that its predictions for the medium
to long term would be of dubious validity. As a result, the IS–LM model is often
used to conduct a comparative static analysis rather than a dynamic analysis,
i.e., for a comparison of flow equilibria for different values of the exogenous
variables, and not a prediction of the dynamic effects of changes in the exoge-
nous variables. The attraction of the IS–LM model, and perhaps the main rea-
son why it is still widely used, is that it provides a simple representation of the
macroeconomy that is easy to work with.

The original IS–LM model was a closed-economy macroeconomic model. It
involved two equations: one representing goods-market flow equilibrium (the
IS equation), the other representing money-market stock equilibrium (the LM
equation). A third equation was added to allow the IS–LM model to be used to
analyze the open economy, namely, the balance of payments (or BP equation),
and the IS function was modified to reflect the effect on aggregate demand of
the real exchange rate and foreign output. The resulting model is known as the
IS–LM–BP model. See Rivera-Batiz and Rivera-Batiz (1985) for a discussion of
Keynesian models of the open economy, and Branson and Henderson (1985)
for a consideration of open-economy macroeconomics with imperfect capital
mobility.

The IS–LM–BP model can be used to describe the economy both under the
Bretton Woods system of fixed exchange rates and under various models of
floating exchange rates. The main distinguishing aspect of these theories is
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their different specification of the BP equation. The standard fixed-exchange-
rate model assumes that due to capital controls the balance of payments is
determined by the current account, and that a balance of payments surplus
takes the form of an increase in official reserves which, unless sterilized, will
increase the money supply. Sterilized intervention involves the sale and pur-
chase of financial assets by the monetary authority in which the aim is to insu-
late the domestic money supply from reserve changes; unsterilized intervention
allows changes in reserves to affect the money supply. The monetary approach
to the balance of payments takes this a step further by assuming that the bal-
ance of payments can be interpreted as an excess demand for (or supply of)
money, and that money-market equilibrium is restored through a change in the
supply of money brought about by a foreign exchange reserve inflow or outflow.

Floating-exchange-rate models typically assume that domestic and foreign
assets are perfect substitutes (possibly after adjusting for risk) and that, as a
result, the balance of payments equation can be replaced by the UIP condition.
These models may be distinguished by their assumptions about the flexibility of
prices and output. The Mundell–Fleming model assumes that the price level is
fixed. The monetary model of the exchange rate assumes that output is fixed.
The Dornbusch model draws a contrast between the demand and supply for
goods and services. It assumes that output is fixed but that demand is flexible,
and that prices are flexible but sticky.

12.3.1 The IS–LM Model

Before turning to the open economy, we consider the closed-economy IS–LM
model. The IS equation is derived from the national income identity

y = c(y, r)+ i(y, r)+ g, (12.1)

where y is output and where consumption and investment are assumed to
depend positively on output (income) and negatively on the real interest rate r ;
g is exogenous government expenditure. If we assume that inflation is zero,
then r = R, the nominal interest rate. The equation describes goods-market
flow equilibrium with the right-hand side giving the demand for goods and
services and the left-hand side giving their supply. It is assumed that supply is
demand determined. The equation can also be written in implicit form as

IS(y, r , g) = 0. (12.2)

This is the IS equation. The name derives from writing goods-market equi-
librium as the flow equilibrium condition that national savings s(y, r) equal
investment i(y, r), i.e.,

s(y, r) = y − c(y, r)− g = i(y, r).
The IS equation gives the combinations of y and r that are consistent with

goods-market flow equilibrium. These are depicted in figure 12.1 by the line IS,
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Figure 12.1. A closed-economy IS–LM model.

which, for simplicity, is assumed to be straight. As inflation is assumed to be
zero, we use R instead of r . The line slopes downward because a higher level of
output requires a lower interest rate to maintain goods-market equilibrium. A
higher level of g implies a higher level of demand for every value of the interest
rate. Thus the IS line is shifted up, or to the right (hence the arrow in figure 12.1).
Note that here we are dealing here with comparative statics and not dynamics,
i.e., we are comparing (static) equilibria and not considering an increase in g.

The LM equation is derived from the condition for money-market equilibrium,
which we write as

M = PL(y,R). (12.3)

The right-hand side is the demand function for nominal money balances, which
is assumed to depend positively on output and negatively on the nominal inter-
est rate. The left-hand side is the nominal supply of money, which is assumed
to be given. Equation (12.3) can be written in implicit form as

LM(y,R, P,M) = 0. (12.4)

This describes the values of y and R that are consistent with money-market
equilibrium. A higher level of M shifts the LM line down, or to the right.

The intersection of the two lines gives the values of y and R that are consis-
tent with simultaneous equilibrium in both the goods and money markets for
given values of g,M , and P . This point represents macroeconomic flow equilib-
rium in the economy. This equilibrium is different from that obtained for the
DGE model because the capital stock may not be in equilibrium at this point.
In full static equilibrium, investment is equal to replacement investment (= δk)
and the capital stock is constant. But in a flow equilibrium, capital can take any
value, and not necessarily its stock-equilibrium value. Put another way, the IS–
LM model describes a temporary (flow) equilibrium that may be changing each
period, and not a permanent (stock) equilibrium that may change as a result of
changes to g, M , or P , or to an external shock to the system.

A higher level of government expenditures is associated with a shift to the
right in the IS line. This results in a flow equilibrium with a higher level of



�

�

“wickens” — 2007/10/15 — 13:08 — page 311 — #329
�

�

�

�

�

�

12.3. The Keynesian IS–LM–BP Model of the Exchange Rate 311

output and a higher interest rate. The higher level of output requires a higher
level of money balances but, since these are assumed fixed, a higher interest
rate is required to make the economy economize on money holdings. A higher
level of the money stock shifts the LM line to the right. For P fixed the new
equilibrium involves a higher level of output but a lower level of interest rates.

The IS–LM model is clearly a convenient way to analyze fiscal and mone-
tary policy conducted by exogenous changes in government expenditures and
the money supply when the price level is fixed. If monetary policy is carried
out through exogenous changes in the interest rate, as in inflation targeting,
then the money supply becomes endogenous, because, in effect, the monetary
authority must supply as much money as is required to sustain the chosen rate
of interest. In this case the LM line becomes horizontal at the given rate of
interest and price level. In this way a fiscal expansion associated with a higher
level of government expenditures would require a higher level of output than
when the money supply is held constant. This is because there must also be an
increase in the money supply in order to keep the interest rate constant. Fiscal
policy is therefore more effective when monetary policy is conducted through
controlling the interest rate than when it is conducted through money-supply
targeting.

In the IS–LM model the price level is assumed to be fixed. Put another way,
it is assumed that prices are sufficiently slow to adjust compared with output
and interest rates that they may be treated as constant over the period of time
under consideration. Prices can be made endogenous by adding an output sup-
ply function. Instead of supply being demand determined, it is expressed as a
positive function of the price level until full capacity is reached, when the line
becomes vertical, as in line AS in figure 12.2. Until full capacity is reached, a
higher level of output therefore requires a higher price level. The idea here is
that the period of time is too short for output to be affected by capital accumu-
lation, and therefore it only depends on labor. The other line is the aggregate
demand function, AD. This is obtained from the IS–LM model. The AD line is
a plot of output against the price level that maintains the savings–investment
equality and money-market equilibrium—i.e., is consistent with simultaneously
being on both the IS and LM lines—and uses the fact that a higher price level
shifts the LM line to the left and results in a lower level of output.

The intersection of the aggregate demand and supply functions relates flow
equilibrium in the goods market to the aggregate price level. A higher level
of government expenditures or of the money supply shifts the AD line to the
right. Below full capacity, this is associated with a higher level of output and
aggregate price. At full capacity, output remains unchanged and only the price
level is higher. The higher price level in each case shifts the LM line to the left
and creates a larger interest rate which reduces the effect on output. At full
capacity the interest rate must be high enough to keep output unchanged. Both
fiscal and monetary policy are then completely ineffective in bringing about
higher output.
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AD

ASP

y

g, M

Figure 12.2. A closed-economy AD–AS model.

y# − y

π

Figure 12.3. The inflation model.

As previously noted, this analysis is an exercise in comparative statics. We
are asking about the state of the economy in different circumstances, and not
about what happens if a variable changes. We have also assumed that inflation is
zero. The IS–LM model is, however, often used to analyze the effects of changes
in variables, even though it is not suited to answering this question because it
treats capital as fixed and lacks proper dynamics. In particular, it is often used
to analyze inflation by adding a Phillips equation. We depict this in figure 12.3
as a negative relation between inflation and the gap between capacity and actual
output: π denotes the rate of inflation, y# − y is the gap from full capacity,
and y# is the capacity level of output.

Having introduced inflation we must distinguish between the nominal and
real interest rates in the IS equation. Replacing r by R − π in equations (12.1)
and (12.2) implies that a higher rate of inflation shifts the IS line to the right in
figure 12.1.

We can summarize the resulting IS–LM model by the following simple log-
linear model:

y = −β(R −π)+ γg,
m = p +y − λR,
π = µ −ψ(y# −y),
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where output, money, and the price level are in logarithms and π = ∆p. The
aggregate demand equation is then

y = γλ
β+ λg +

β
β+ λm− β

β+ λp +
βλ
β+ λπ

and long-run full-capacity equilibrium inflation is µ.
A further modification, widely used as a result of the high inflation of the

1970s and the breakdown of the Phillips equation in the 1980s, is to assume
that inflation also depends on expected inflation. The inflation equation is then
written as

π = πe −ψ(y# −y), (12.5)

where πe is expected inflation. Equation (12.5) is known as the expectations-
augmented Phillips equation. It implies that the inflation equation shifts to the
right when expected inflation is higher. As a result, in the long run, the Phillips
equation is vertical and there is no longer a trade-off between inflation and
output. Full-capacity equilibrium inflation is now equal to expected inflation,
but this rate of inflation is not determined by the model. In particular, it is not
determined by output. If money is exogenous, equilibrium inflation is equal to
the rate of growth of the money supply.

12.3.2 The BP Equation

In an open economy the IS–LM model needs further modification to take
account of the foreign sector. An extra equation—the balance of payments or
BP equation—is required, and we must amend the IS function. We consider first
the BP equation.

Previously, in chapter 7, we wrote the balance of payments in real terms as

xt −Qtxm
t + r∗t ft = ∆ft+1,

where xt is exports, xm
t is imports,Qt is the terms of trade and, if all goods are

tradeables, also the real exchange rate (StP∗t )/Pt , St is the nominal exchange
rate, Pt and P∗t are the domestic and foreign price levels, ft is the net stock of
foreign assets, r∗t is an exogenous world real rate of interest, r∗t ft represents
net income from foreign asset holding, and we have assumed that inflation is
zero. The left-hand side is the real current account and the right-hand side is
the capital account.

Exports depend positively on the real exchange rate and world output y∗t ,
and imports depend negatively on the real exchange rate and positively on
domestic output. The net holding of foreign assets (domestic holding of foreign
assets minus foreign holding of domestic assets) depends on the relative rates
of return of domestic and foreign assets expressed in the home currency—
the portfolio balance decision. An increase in the rate of return on foreign
assets increases their holding by domestic residents and hence their income.
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An increase in the domestic rate of return raises the foreign holding of domes-
tic assets and the outflow of interest income. We approximate the balance of
payments by the log-linear model

θ(s + p∗ − p)−φy + ηy∗ + µ(R∗ + ŝ − R) = ∆f ,
where p and p∗ are the logarithms of the domestic and foreign price levels,
y and y∗ are the logarithms of domestic and world output, R and R∗ are
the domestic and the world nominal interest rates, s is the logarithm of the
nominal exchange rate, ŝ is its expected rate of change, and we assume that
θ > 0. R∗ + ŝ − R represents the effect on net foreign asset income of relative
rates of return and µ > 0. The BP equation therefore gives a positively sloped
relation between y and R.

Balance of payments equilibrium implies that ∆f = 0 and hence there is cur-
rent account, but not trade, balance. Imperfect capital substitutability implies
that 0 < µ < ∞. If domestic and foreign assets are perfect substitutes, then
µ = ∞. In this case the balance of payments equation reduces to the UIP
condition discussed in chapter 11, as

lim
µ→∞(R − R

∗ − ŝ) = lim
µ→∞

1
µ
[θ(s + p∗ − p)−φy + ηy∗ −∆f] = 0

and hence
R = R∗ + ŝ.

To complete the model we amend the IS equation to include the effects of
trade in the national income identity. In view of the specification of the balance
of payments we include the logarithm of the real exchange rate and domestic
and foreign output in the IS equation. Thus a weaker real exchange rate and a
higher value of world output also shift the IS line to the right. The LM equation
is unchanged. The IS–LM–BP model can then be written as

y = α(s + p∗ − p)− βR + γg + δy∗, (12.6)

m = p +y − λR, (12.7)

∆f = θ(s + p∗ − p)−φy + ηy∗ + µ(R∗ + ŝ − R), (12.8)

where α = σθ, δ = ση, and 0 < σ < 1 is equal to the share of trade in GDP.
The aggregate demand function obtained by eliminating R from equa-

tions (12.6) and (12.7) becomes

y = γλ
β+ λg +

β
β+ λ(m− p)+ αλ

β+ λ(s + p
∗ − p)+ δλ

β+ λy
∗

and so now depends on the real exchange rate and world output. Thus, in the
open economy, a higher real exchange rate and higher world output result in
higher aggregate demand. We note that if domestic and foreign goods are per-
fect substitutes, then θ → ∞ and hence α → ∞. As a result, the IS and AD
equations reduce to PPP:

p = s + p∗.
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s, p*, y*, R*
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Figure 12.4. The IS–LM–BP model.

The AD line is then horizontal at s + p∗.
The IS–LM–BP model is represented diagrammatically in figure 12.4. We have

assumed that the BP line is flatter than the IS line. The higher the substitutability
between domestic and foreign assets, the more likely this is. As they become
perfect substitutes (µ →∞) the BP line becomes horizontal. Equilibrium occurs
at the point of intersection of the three equations at A. Above the BP line we
have a current-account deficit and an outflow of capital so that ∆f < 0, and
below it, when we have a surplus, we have ∆f > 0. The arrows in figure 12.4
denote the direction of shift of a line to maintain equilibrium following a higher
value of the associated variables. These enable us to analyze the effects of shifts
in the exogenous variables. As before, it is best to view the analysis as being for
the short term, i.e., equilibrium is only temporary.

If there are controls on the movement of private capital so that domestic
residents are unable to acquire or sell foreign assets, then µ = 0 and the BP line
is vertical. To the left of the vertical BP line we have ∆f > 0 and to the right
∆f < 0. Due to the controls, the change in net foreign assets consists solely of
a change in government foreign exchange reserves. These reserves, which we
denote as h, form part of the domestic money supply. The total money supply
is

m = d+ h,
where d is the domestic component of the money supply. If d is fixed, then

∆f = ∆h = ∆m. (12.9)

A current-account surplus therefore increases the money supply and a deficit
reduces it. Above the BP line, when we have a current-account deficit, we have
∆f = ∆m < 0, and below it, when we have a surplus, we have ∆f = ∆m > 0.
This is indicated in figure 12.4. For points off the BP line the money sup-
ply would be changing and hence the LM line would be shifting. Equilibrium
requires that the economy is on the BP line as well as on the IS and LM lines,
and that the LM line is fixed.
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By specializing the IS–LM–BP model it can be used to represent the econ-
omy during the Bretton Woods period, and also a number of different flexible-
exchange-rate models. Under Bretton Woods, exchange rates were fixed and
there was no capital mobility. The capital account of the balance of payments
then represented changes in reserves and hence in the money supply. This is the
situation captured by the monetary approach to the balance of payments. Turn-
ing to flexible-exchange-rate models, the Mundell–Fleming model is obtained by
fixing the price level and setting µ = ∞ when UIP holds. If, in addition, ŝ = 0,
then we have the Mundell–Fleming model with static expectations. The Dorn-
busch model is a variant of the Mundell–Fleming model in which prices are
flexible but sticky. The monetary model, which has flexible prices but fixed
output, sets α = θ = µ = ∞.

12.3.3 Fixed Exchange Rates: The Monetary Approach to the
Balance of Payments

The monetary approach to the balance of payments (MABP) of Frenkel and John-
son (1976) is a fixed-exchange-rate model with capital controls, hence µ = 0.
The MABP assumes that the balance of payments is a monetary phenomenon. A
balance of payments surplus, for example, is interpreted as an excess demand
for the stock of money where money-market equilibrium is restored through
a reserve inflow that increases the supply of money until it equates with the
demand for money. The balance of payments is brought back into equilib-
rium by a correction to the current account that is induced by the monetary
expansion.

The model for the MABP consists of equations (12.6), (12.7), and (12.8) of the
IS–LM–BP model together with a money-supply equation (12.9). The model can
be rewritten as the IS equation (12.6), which determines goods-market equilib-
rium, plus the following three equations which describe money demand, money
supply, and money-market equilibrium:

mD = y + p − λR,
mS = ∆f +m0,

mD =mS =m,
where ∆f is determined by the balance of payments, equation (12.8), andm0 is
the initial level of money in the economy. Thus,y , p, andm are the endogenous
variables; R and s are exogenous variables, as are g, y∗, p∗, and R∗.

The reduced-form solutions for y and p are

y = σ{α(s + p∗)− [αλ+ β(1+ θ)]R + δ(1+ θ)g
+ [γ(1+ θ)−αη]y∗ −αm0},

p = σ{[θ −α(1+φ)](s + p∗)+ [λ+ β(1+φ)]R − δ(1+φ)g
+ [γ(1+φ)− η]y∗ +m0},
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Figure 12.5. The monetary approach to the balance of payments.

where σ = 1+θ−α(1+φ) > 0. All coefficients (or combinations of coefficients)
are positive except for that of y∗ in the equation for p, which could take either
sign. It follows that a depreciation (higher s) and a higher p∗ will raise both y
and p. A fiscal expansion (higher g) and a domestic monetary easing (lower R)
raise y but reduce p. A larger world income y∗ raises y but its effect on p is
unclear, though it is likely to be negative.

The solution may also be obtained graphically as in figure 12.5. The line IS is
still the IS equation but is now drawn in (y,p)-space, instead of (r ,y)-space,
and the line MM is the money-market equilibrium obtained by equating money
demand and money supply to give

y = 1+ θ
1+φp +

1+ θ
1+φ(s + p

∗)+ λ
1+φR +

1+ θ
1+φy

∗ + 1
1+φm0.

The direction of shift of each line following increases in the values of the exoge-
nous variables is shown by the arrows. The relative slopes of the lines reflects
the assumption that α < (1+ θ)/(1+φ).

12.3.4 Exchange-Rate Determination with Imperfect Capital
Substitutability

Modern theories of a flexible exchange rate assume that domestic and foreign
capital are perfect substitutes. Before discussing these, for the purposes of com-
parison with modern theories, we consider a situation where they are imper-
fect substitutes. We base our analysis on the IS–LM–BP model, equations (12.6)
and (12.7), partly to reflect the origins of this approach in the Keynesian model.
We now treat the analysis as dynamic rather than as an exercise in comparative
statics. We assume that there are no capital controls and that the balance of
payments determines the net stock of foreign assets. As exchange rates adjust
much faster than output and prices, we assume thaty andp are exogenous. The
model is then used to determine s, f , and R withm, y , p, and R all exogenous.
Although the exchange rate is flexible, in the spirit of the Keynesian model, we
assume that ŝ, its expected rate of change, is zero.
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The solutions are obtained recursively. First R is determined from the LM
equation, then s is obtained from the IS and LM equations (or equivalently
from the AD equation) and f is determined from the balance of payments.
The solutions are

R = y + p −m
λ

,

s = β+ λ
αλ

y + β+αλ
αλ

p − β
αλ
m− γ

α
g − δ

α
y∗ − p∗,

f = −α(µ + λφ)− θ(β+ λ)
αλ

y − αµ − βθ
αλ

p + αµ − βθ
αλ

m

− θγ
α
g − θδ−αη

α
y∗ − µR∗ + f0.

Both a fiscal and a monetary expansion are predicted to cause the exchange
rate to appreciate. A fiscal expansion increases domestic demand, and since out-
put and prices are fixed, this requires a corresponding fall in net exports (trade),
which is brought about by the exchange-rate appreciation. The weaker trade
balance also results in lower net foreign asset holdings. A monetary expan-
sion reduces domestic interest rates and also raises domestic demand, hence
the need for an exchange-rate appreciation. The effect on net asset holdings
depends on the degree of substitutability of domestic and foreign assets: the
higher their substitutability, the more likely are net assets to increase.

This analysis is best suited to the short term. In the longer term, alternative
scenarios may be more appropriate, such as also allowing output and prices to
adjust. Suppose, that the country is a small open economy and must therefore
adopt world interest rates. Moreover, suppose that we impose stock equilibrium
so that ∆f = 0. In this case, the model can be written in flow equilibrium as

y = α(s + p∗ − p)− βR∗ + γg + δy∗,
m = p +y − λR∗,
0 = θ(s + p∗ − p)−φy + ηy∗.

It now determines s, y , and p instead of s, R, and f . Their solutions are

s =m− γ(θ −φ)
θ −αφ g +

[
λ+ β(θ −φ)

θ −αφ
]
R∗ + δ(θ −φ)− η(1+α)

θ −αφ y∗,

y = θγ
θ −αφg −

βθ
θ −αφR

∗ + δθ −αη
θ −αφ y

∗,

p =m− θγ
θ −αφg +

[
λ+ βθ

θ −αφ
]
R∗ − δθ −αη

θ −αφ y
∗,

where θ > αφ.
Hence, a fiscal expansion again causes an exchange-rate appreciation, and

it raises output and reduces prices. A monetary expansion only has nominal
effects as it is passed through into prices and the exchange rate, which rise
in the same proportion. As the real exchange rate is unaffected, a monetary
expansion has no impact on output.



�

�

“wickens” — 2007/10/15 — 13:08 — page 319 — #337
�

�

�

�

�

�

12.4. UIP and Exchange-Rate Determination 319

12.4 UIP and Exchange-Rate Determination

We now assume that domestic and foreign bonds are perfect substitutes. In this
case, the balance of payments reduces to the UIP condition. This assumption is
a building block for nearly all modern theories of a floating exchange rate. It is
also the only equation needed to analyze the exchange rate when the interest
rate is the policy instrument, such as in inflation targeting under a policy of
discretion where the domestic interest rate is chosen by the monetary authority.

Previously, in our examination of a flexible exchange rate, we used a Key-
nesian style of model and carried out a comparative-statics analysis. We now
revert to a full dynamic analysis of exchange-rate models. Thus, we use the UIP
condition derived in chapter 11, which involves forming expectations of the
future exchange rate. Using the notation of this chapter, UIP may be written as

Rt = R∗t + Et∆st+1.

Solving this forwards gives

st =
∞∑
i=0

Et(R∗t+i − Rt+i), (12.10)

which implies that the exchange rate responds instantly to new information
about current and expected future nominal interest differentials.

In particular, if R∗t stays constant, then a rise in current Rt , or in expected
future Rt+n (n > 0), will cause an instantaneous appreciation (fall) in the cur-
rent spot rate st . However, a 1% increase in Rt today that is expected to be
sustained for n periods, will cause an n% appreciation today, and not just a
1% change. Uncertainty about how long the interest differential will last there-
fore makes it difficult for the FOREX market to price foreign exchange. Since
the exchange rate is part of the transmission mechanism of monetary policy
in inflation targeting, it is also difficult to assess the impact on inflation of a
change in interest rates.

An increase in Rt , with R∗t constant, is predicted to cause both st and Etst+1

to fall. But because Rt > R∗t , in order to maintain UIP, we require that st and
Etst+1 change in such a way that st > Etst+1. This gives rise to the following
apparent paradox: an increase in Rt will cause the exchange rate to appreciate,
but the market (acting rationally) will expect the exchange rate to depreciate.
The paradox is resolved if we note that the expected exchange-rate depreciation
is in the future, from period t to period t+1, and not from period t−1 to period
t. Thus, although Etst+1 decreases, it does not fall by as much as st in order that
Et∆st+1 remains positive. If we set n = 1, then figure 12.6 shows what happens
to the exchange rate between periods t and t + 1.

Another implication of the UIP condition is that, if in period t investors
acquire the expectation that there will be a change in the domestic interest
rate in period t + n, then the spot exchange rate st would change in period
t, and not wait until the interest rate change actually occurred. It would then
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−n

t t + n

st

Figure 12.6. The dynamic response of the exchange rate to a change in the interest
rate.

remain at this level until there was a further change in interest rates. Suppose
now that, although the interest rate is expected to change in period t+n, when
period t + n arrives there is no change in the interest rate. The spot exchange
rate would change in period t in anticipation of the change in period t+n, but
when the mistake is realized, the spot rate would immediately return to its orig-
inal level. Figure 12.6 depicts the behavior of the exchange rate between periods
t and t+n. As previously noted in chapter 11, this is called a peso effect, after
events in Mexico in the 1980s when it was anticipated that the Mexican interest
rate would rise but in fact did not.

Another common occurrence is for the spot exchange rate to depreciate at
the same time as interest rates are reduced. Although at first sight this is at
variance with UIP, it could in fact be consistent with UIP. If markets expected a
larger interest rate cut than was implemented, then the exchange rate, having
already depreciated in anticipation of a large cut, would need to appreciate in
order to correct for the previous over-depreciation.

Both of these apparently anomalous results illustrate an important feature of
exchange rates, or of any asset price, where they are based on forward-looking
expectations: news about the future, whether correct or not, will affect the spot
price. As a result of this susceptibility to news and shocks, exchange rates are
volatile. We also note that when the money stock is chosen as the policy instru-
ment this tends to make interest rates, and hence exchange rates, highly volatile
due to their strong response to money shocks. This is another reason for the
widespread use of interest rates as the monetary-policy instrument.

We have shown that interest rates are central to the determination of floating
exchange rates. For highly traded currencies like the dollar, the euro, sterling,
and the yen the volume traded each day is so great that only interest rates
can be used to control the currency. Reserves are not large enough to have
any significant effect; this is something many central banks have discovered in
recent years as a result of attempts to control the exchange rate through foreign
exchange intervention.

In contrast, most macroeconomic theories of the nominal exchange rate focus
on the effects of monetary and fiscal policy, where monetary policy is conducted
through controlling the money supply. If UIP holds, then monetary and fiscal



�

�

“wickens” — 2007/10/15 — 13:08 — page 321 — #339
�

�

�

�

�

�

12.5. The Mundell–Fleming Model of the Exchange Rate 321

policy determine the exchange rate through their effect on interest rates. The
response of the exchange rate may be instantaneous as in the monetary model
of the exchange rate where prices are assumed to be flexible. Or, if prices are
fixed, as in the Mundell–Fleming model, or sticky, as in the Dornbusch model,
exchange-rate adjustment may be spread over time; moreover, due to the pres-
ence of the expected future change in the exchange rate, the spot rate might
overshoot its new long-run value.

12.5 The Mundell–Fleming Model of the Exchange Rate

12.5.1 Theory

This model is due to Fleming (1962) and Mundell (1963). Together with the mon-
etary model, it forms the cornerstone of modern nominal-exchange-rate theory.
The focus in the Mundell–Fleming model is on the flexibility of the nominal
exchange rate in a world of perfect capital mobility and rigid prices. As noted
above, the Mundell–Fleming model consists of three equations: the IS equation,
the LM equation, and the UIP condition:

IS : yt = α(st + p∗t − pt)− βRt + γgt + δy∗t ,
LM : mt = pt +yt − λR∗t ,
UIP : Rt = R∗t + Et(st+1 − st),

where the price levels are fixed. There are three endogenous variables: the
nominal exchange rate, output, and the domestic interest rate.

Solving for the exchange rate we obtain

st = β+ λ
α+ β+ λEtst+1 + xt,

xt = 1
α+ β+ λ[(α− 1)pt +mt − γgt − δy∗t −αp∗t + (β+ λ)R∗t ].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (12.11)

where xt is exogenous. Solving equation (12.11) forwards gives

st =
∞∑
i=0

(
β+ λ

α+ β+ λ
)i
Etxt+i.

Thus the exchange rate jumps instantly to its new equilibrium following a
change in any of the variables that make up xt .

The long-run solutions for the three endogenous variables can be obtained as
follows: output is determined by the LM equation, the exchange rate from the
IS equation, and the interest rate from the UIP condition. The long-run reduced
forms are

s = −1−α
α

p + 1
α
m− γ

α
g + β+ λ

α
y∗ + p∗,

y =m− p + λR∗,
R = R∗.
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Figure 12.7. Monetary policy.

Hence, in the long run, both a permanent increase in the money supply and
a decrease in government expenditures cause the nominal exchange rate to
depreciate.

Output is affected only by monetary policy. Fiscal policy has no effect on out-
put, i.e., fiscal policy is entirely crowded out. This is in complete contrast to the
effect on output of monetary and fiscal policy when the nominal exchange rate
is fixed. In the MABP we showed that monetary policy had no effect on output
but that an expansionary fiscal policy caused output to increase. In the Mundell–
Fleming model an increase in government expenditures causes an appreciation
in the exchange rate, which brings about a switch in private expenditures from
domestic to foreign goods. As output is unchanged, this switch must be equal in
size to the increase in government expenditures. Thus the government’s addi-
tional claim on domestic output is at the expense of the claims of the private
sector.

Further understanding of the effects of monetary and fiscal policy may be
obtained using the IS–LM–BP diagram. A key difference from before is that, as
a result of assuming UIP, the BP line is horizontal.

12.5.2 Monetary Policy

In figure 12.7 we depict the effect of a permanent increase in the money supply.
The LM line shifts to the right as a result of the monetary expansion. Notionally,
the economy moves from point A to point B, where the IS and LM lines intersect.
At B there is an incipient (notional) capital outflow due to a negative interest dif-
ferential. This causes an exchange-rate depreciation, which expands trade and
shifts the IS line to the right. The depreciation results in the economy attaining
a new equilibrium at point C. At this point output has increased, which raises
the demand for money and hence the interest rate. This restores the original
zero interest differential and so removes any incentive for further changes in
the exchange rate or capital movements. Thus a monetary expansion has real
effects on output, and causes an exchange-rate depreciation.
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Figure 12.8. Fiscal policy.

From the reduced-form solutions we know that R is unchanged, that ∆y =
∆m, and that ∆s = (1/α)∆m. The exchange rate does not therefore change by
the same amount as the money supply; if α < 1 it changes by more, and if α > 1
it changes by less. This result differs from the previous model with imperfect
capital substitutability, and from the monetary and Dornbusch models, which
are yet to be considered. In these models the exchanges rate changes by the
same percentage as the money supply. The difference is due to the assump-
tion in the Mundell–Fleming model that the price level does not respond to the
money supply. If the price level were to increase, then, from the reduced-form
exchange-rate equation, s would increase by less than p if α > 1

2 and by more
if 0 < α < 1

2 . The solution would then be similar to the other models.
It can be shown that an increase in the foreign interest rate would cause

a persistent capital outflow, an exchange-rate depreciation, and a shift to the
right in the IS line, which would raise the domestic interest rate. Equilibrium is
regained when the original interest differential is restored by an equal increase
in the domestic interest rate. From the reduced-form solutions, ∆s = ((β +
λ)/α)∆R∗, ∆y = λ∆R∗, and ∆R = ∆R∗.

12.5.3 Fiscal Policy

We consider a permanent increase in g. This shifts the IS line to the right as in
figure 12.8. Notionally, the economy moves from point A to point B, where the
IS and LM lines intersect. At point B there is a positive interest differential. This
causes an incipient capital inflow, and hence an exchange-rate appreciation,
which reduces trade and shifts the IS line back to the left. The exchange-rate
appreciation must be sufficient to restore the IS line to its original position,
implying that output is unchanged. In effect, the fiscal expansion has resulted
in a reallocation of domestic output from the private to the government sector
which was brought about by an exchange-rate appreciation. Fiscal policy there-
fore has no effect on output; it is completely crowded out by the exchange
rate. From the reduced-form equations, ∆s = −(γ/α)∆g, and y and R are
unchanged.
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12.6 The Monetary Model of the Exchange Rate

12.6.1 Theory

The key assumptions of the monetary model are that all prices are perfectly
flexible, including the exchange rate, and money supplies and output are exoge-
nous (see Frenkel 1976; Mussa 1976, 1982). Unlike the Mundell–Fleming model,
the monetary model can be applied to a large economy as well as a small econ-
omy as both the domestic and foreign interest rates are exogenous variables.
For a large open economy, the model consists of four equations: UIP, PPP, and
domestic and foreign money-demand functions,

UIP : Rt = R∗t + Et∆st+1

PPP : pt = p∗t + st,
MD : mt = pt +yt − λRt,
MD∗ : m∗

t = p∗t +y∗t − λR∗t .
All variables are logarithms except the interest rates, Rt and R∗t . For a small
open economy we assume that R∗t is exogenous.

UIP is based on no capital controls and a floating exchange rate. PPP implies
that the real exchange rate is constant over time as a result of goods arbitrage
brought about by flexible goods prices. Our previous discussion of the real open
economy and the BOP makes it highly improbable that the real exchange rate
is constant, even in the long run. PPP definitely does not hold in the short run.
Accordingly, PPP is often replaced by the weaker assumption of relative PPP
(RPPP). This implies that PPP holds in terms of first differences (i.e., in terms of
proportional rates of change):

RPPP, ∆pt = ∆p∗t +∆st.
It would then follow that

Et∆pt+1 = Et∆p∗t+1 + Et∆st+1.

Because Et∆st+1 � 0 in the short run, we would have Et∆pt+1 � Et∆p∗t+1, i.e.,
domestic and foreign inflation rates would be similar. We note that PPP is not
strictly required for the monetary model as RPPP will deliver the same analytic
results.

The assumption of identical domestic and foreign money-demand functions
is made for convenience. This enables us to express the model in terms of the
differences between the domestic and foreign money-demand functions. We
note that, in practice, money-demand functions may require short-run dynam-
ics, but we omit these. The difference between the two money-demand functions
is

mt −m∗
t = (pt − p∗t )+ (yt −y∗t )− λ(Rt − R∗t ).

We can now eliminate the price and interest differentials using the PPP and UIP
conditions. Using a tilde to denote the difference between domestic and foreign,
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we obtain a difference equation in the logarithm of the nominal exchange rate,
namely,

m̃t = st + ỹt − λEt∆st+1.

Hence

st = λ
1+ λ[m̃t − ỹt]+ λ

1+ λEtst+1. (12.12)

Equation (12.12) has a forward solution, which is

st =
(
λ

1+ λ
)n
Etst+n + λ

1+ λ
n−1∑
i=0

(
λ

1+ λ
)i
Et[m̃t+i − ỹt+i].

Given the transversality condition that limn→∞(λ/(1 + λ))nEtst+n = 0, the
solution is

st = λ
1+ λ

∞∑
i=0

(
λ

1+ λ
)i
Et[m̃t+i − ỹt+i]. (12.13)

Thus, compared with equation (12.10), in equation (12.13) we have replaced
the interest differential with the excess holding of money over, in effect, the
demand for transactions balances. The exchange rate is forward looking once
more: it jumps as a result of new information aboutmt+i−m∗

t+i andyt+i−y∗t+i,
i � 0. Moreover, it responds today to expected future values of m̃t+1 and ỹt+i.
Due to discounting by the factor λ/(1+λ), the further ahead the expected future
change in the differential, the smaller is the current impact on st ; the impact
effect is (λ/(1+ λ))i when the change is expected to occur in period t + i.

Comparing this solution with that derived from the UIP condition, we note
that st still depends on current and expected future interest differentials, but
now these are endogenous and not exogenous, and they depend on current
and expected future differentials in the money supplies and outputs of the two
countries.

12.6.2 Monetary Policy

We now consider the effect on the exchange rate of changes in the money sup-
ply. Although our discussion assumes that these changes are due to monetary
policy, the analysis also applies to money shocks unconnected with policy. Our
discussion of fiscal policy below is subject to the same observation.

Suppose that monetary policy is conducted through money-supply targeting,
and that the aim is for the money supply to grow at a constant rate. We wish
to distinguish between temporary and permanent money shocks. We interpret
temporary money shocks as those affecting the money stock and permanent
shocks as those affecting the rate of growth of the money supply. We therefore
assume that the domestic and foreign money supplies follow random walks
with drift. A change in the drift term, which is the long-run rate of growth
of money, is a permanent shock, and a change in the disturbance term is a
temporary shock. We also assume that output levels in the two countries satisfy
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random walks, i.e., the economies are growing in the long run at constant rates.
To summarize, we assume that

∆mt = µ + εt, Etεt+1 = 0,

∆m∗
t = µ∗ + ε∗t , Etε∗t+1 = 0,

∆yt = γ + ξt, Etξt+1 = 0,

∆y∗t = γ∗ + ξ∗t , Etξ∗t+1 = 0.

Hence, in the long run, the inflation rates in the domestic and foreign economies
are µ and µ∗, and the growth rates of GDP are γ and γ∗.

We note that if ∆xt = α+ εt and Etεt+1 = 0, then xt+i = iα+ xt +
∑i
j=1 εt+j

and Etxt+i = iα + xt . We also note that
∑∞
i=0 θi = 1/(1 − θ) and

∑∞
i=0 iθi =

θ/((1− θ)2) for |θ| < 1. It follows that

Etm̃t+i = iµ̃ + m̃t,

Etỹt+i = iγ̃ + ỹt,
where we recall that a tilde denotes a differential. The solution for the exchange
rate is

st = 1
1+ λ

∞∑
i=0

(
λ

1+ λ
)i
[i(µ̃ − γ̃)+ m̃t − ỹt]

= λ(µ̃ − γ̃)+ m̃t − ỹt.
A constant nominal exchange rate requires constant differentials in the

money supplies and the output levels, and hence the same rates of growth
of money and output. If one country has a permanently higher rate of infla-
tion than another, or a lower rate of output growth, then the exchange rate will
depreciate.

A permanent increase in the domestic money growth rate relative to the for-
eign rate implies that ∆µ̃ > 0 and hence ∆st > 0. Thus there is a jump depre-
ciation in the exchange rate in period t and this change in the exchange rate
is permanent. Usually λ > 1, hence the reaction of the exchange rate is larger
than this permanent shock. A related argument applies to output growth rates.

A temporary increase in relative money stocks, or output levels, will not affect
the relative growth rates of money and output, but will cause m̃t and ỹt to
change. There will be an equal change in the exchange rate in period t, but this
will be temporary. In particular, a temporary increase in the domestic money
supply will cause a temporary domestic depreciation.

We can now revisit the paradox mentioned earlier, namely: Why does an
increase in the money stock cause a depreciation of the exchange rate, but
the market (acting rationally) expects the exchange rate to appreciate? For sim-
plicity, we assume that m∗

t+i, yt+i, and y∗t+i = 0 for all i. The exchange rate is
then determined by

st = 1
1+ λmt + λ

(1+ λ)2Etmt+1 + · · · . (12.14)
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If, in addition, mt+i = 0 for all i, then st = 0. Now consider a one-period
unanticipated increase in mt from zero to m > 0. It then follows that

st = 1
1+ λm > 0;

i.e., the spot exchange rate depreciates. As the exchange rate returns to its
original level next period so that st+i = 0 (i > 0),

Etst+1 − st = − 1
1+ λmt < 0.

Hence there is an expected appreciation of the exchange rate between periods
t and t + 1 and this maintains UIP.

Suppose next that the domestic money stock is expected to increase in period
t + 1, possibly due to an announcement by the monetary authorities, and this
announcement is credible, i.e., believed by the market. For simplicity, we con-
tinue to assume thatm∗

t+i, yt+i, and y∗t+i = 0 for all i. We consider a temporary
and a permanent change. Again we use equation (12.14).

12.6.2.1 A Temporary Change

Let mt+i = 0 for all i > 0 except for mt+1 =m > 0. It follows that

st = λ
(1+ λ)2Etmt+1 = λ

(1+ λ)2m > 0,

Etst+1 = 1
1+ λEtmt+1 = λ

(1+ λ)2m < st,

Etst+i = 0, i � 2,

and so

Et[st+1 − st] = 1
(1+ λ)2Etmt+1 > 0.

Consequently, the credible announcement of a temporary increase in the money
supply in period t+1 causes the exchange rate to depreciate in period t, prior to
any actual change in the money supply. In period t+1, when the money supply
actually increases, the exchange rate appreciates. Seen from the perspective
of period t + 1, but forgetting what had happened in period t and why it had
occurred, this may seem paradoxical. In subsequent periods the exchange rate
reverts to its original value as its long-run equilibrium level is unaffected by
these events. Once again the explanation for these changes is that at all times
the expected change in the exchange rate must satisfy UIP. These exchange-rate
movements are depicted in figure 12.9 for m = 1.
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Figure 12.9. An anticipated temporary increase in money in period t + 1.

12.6.2.2 A Permanent Change

We now assume thatmt = 0 and that the expectation in period t is thatmt+i =
m > 0 for all i > 0. It follows that

st = λ
(1+ λ)2Etmt+1 + λ2

(1+ λ)3Etmt+2 + · · ·

= λ
1+ λm,

Etst+1 = 1
1+ λEtmt+1 + λ

(1+ λ)2Etmt+2 + · · ·
=m > st,

Etst+i =m, i � 2,

and so

Et[st+1 − st] = 1
1+ λm > 0.

Hence, following the announcement in period t of a permanent change in the
money supply from period t+1, the spot exchange rate st immediately depreci-
ates (increases). It then depreciates again in period t+1 when the money-supply
change takes effect. Thereafter, the exchange rate stays at this new equilibrium
level until affected by new shocks. This is depicted in figure 12.10 for m = 1.

12.6.3 Fiscal Policy

Fiscal variables are not explicitly included in the monetary model. If fiscal policy
has any effect on the exchange rate, then it would be through its impact on
output. Since output has the opposite sign to money in the solution of the
exchange rate, but otherwise has the same impact, we may infer that an increase
in current or expected future values of output caused, for example, by a fiscal
expansion would bring about an appreciation of the spot exchange rate.
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Figure 12.10. An anticipated permanent increase in money from period t + 1.

12.7 The Dornbusch Model of the Exchange Rate

12.7.1 Theory

In the Mundell–Fleming model prices were fixed, and in the monetary model
they were perfectly flexible. The Dornbusch overshooting model (Dornbusch
1976) assumes that prices are flexible, but sticky. The Dornbusch model was
developed from the Mundell–Fleming and the monetary models of the exchange
rate with the addition of an equation for the rate of inflation in which inflation is
due to the current excess demand for goods and services. Even though there is
no lag in the equation, the adjustment of prices is not instantaneous. This is suf-
ficient to cause more variability in the exchange rate and in output in the short
run than in the monetary model. After analyzing the Dornbusch model and its
implications for monetary and fiscal policy, we return to the monetary model
and examine the implications of amending it to include price stickiness. As a
result, we come closer to having a general equilibrium model of the exchange
rate. We refer to this as the monetary model with sticky prices. We show that in
this model the behavior of the nominal exchange rate is similar to that in the
Dornbusch model. For a retrospective assessment of the Dornbusch model, see
Rogoff (2002).

Like the monetary model, the Dornbusch model is highly stylized. It is essen-
tially an IS–LM–BP model with an aggregate demand function replacing the IS
function, with UIP replacing the balance of payments, and with the addition of
a price equation. It can be represented by the following equations:

dt = α(st + p∗t − pt)− βRt + γyt + g,
∆pt = θ(dt −yt)+ vt,
mt = pt +yt − λRt +ut,
Rt = R∗t + Et∆st+1,

where d is aggregate demand, y is domestic output or supply, which is exoge-
nous, s is the nominal exchange rate, p is the price level, R is the domestic
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nominal interest rate, g is government expenditure, m is the money supply,
and u and v are zero-mean serially independent shocks. An asterisk denotes
the equivalent foreign variable. All variables are logarithms except the inter-
est rates. Thus the Dornbusch model draws a distinction between aggregate
demand and supply. The first equation is the aggregate demand function. The
second equation relates the rate of inflation to aggregate excess demand; in
effect, this is the same as the output gap. R∗t is assumed to be exogenous, hence
the Dornbusch model can be considered as suitable for a small open economy.
We recall that in the monetary model, R∗t is an endogenous variable.

Dornbusch’s original model was in continuous time. A distinction was there-
fore made between st and the other variables. st was assumed to be a jump vari-
able, responding instantly to new information. In contrast, pt was only allowed
to respond with a delay. Such a distinction was vital in producing the exchange
rate overshooting property characteristic of the Dornbusch model. In discrete
time we do not make such a distinction.

The solution of the model is obtained by first reducing the model to two equa-
tions in pt and st . The price equation is obtained from the first three equations
and is

pt = µpt−1 +φst + at,

at = µθ(γ − 1− β
λ
)yt + µβθλ mt + µθg + µαθp∗t −

µβθ
λ
ut + µvt,

⎫⎪⎬
⎪⎭ (12.15)

where µ = [1+ θ(α+ (β/λ))]−1 and φ = µαθ. The exchange-rate equation is

st = Etst+1 − 1
λ
pt + bt,

bt = −1
λ
yt + 1

λ
mt + R∗t −

1
λ
ut.

⎫⎪⎪⎬
⎪⎪⎭ (12.16)

Using the lag operator, and recalling that Lizt = zt−i and L−izt = Etzt+i, the
reduced-form equation for st can be written as

[λ− (µλ+ λ+φ)L+ µλL2]L−1st = xt (12.17)

or as
µλf(L)L−1st = xt, (12.18)

where
xt = at − λ(1− µL)bt.

The characteristic, or auxiliary, equation is

f(L) = 1
µ
−
(

1+ 1
µ
+ φ
µλ

)
L+ L2 = 0.

This has a saddlepath solution as f(1) = −(φ/µλ) < 0. We write the roots of
the characteristic equation as

L = η1 � 1 and η2 < 1.
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Hence,

f(L) = (L− η1)(L− η2)

= −η1

(
1− 1

η1
L
)
(1− η2L−1).

The solution for st is therefore

st = η−1
1 st−1 − 1

µλη1

∞∑
i=0

ηi2Etxt+i, (12.19)

which can be written as the forward-looking partial adjustment model

∆st =
(

1− 1
η1

)
(s̄t − st−1), (12.20)

s̄t = − 1
µλ(η1 − 1)

∞∑
i=0

ηi2Etxt+i, (12.21)

where s̄t is the “target” value for st as well as the steady-state solution. The full
solution therefore has both a forward-looking and a backward-looking compo-
nent. Following a permanent shock toxt , st jumps instantaneously onto the sad-
dlepath, equation (12.19), before proceeding in geometrically declining steps to
its new equilibrium s̄t .

The steady-state solution of the exchange rate for constant values of the
exogenous variables is

s̄t =mt − 1
α
g + 1−α− γ

α
yt − p∗t +

(
λ+ β

α

)
R∗t . (12.22)

It follows that a permanent increase in the money supply mt causes an equal
depreciation in the exchange rate, and a fiscal expansion (increase in wt)
causes an appreciation. An increase in R∗t and a decrease in p∗t both cause
a depreciation.

The solution for pt is obtained by substituting equation (12.21) into (12.15)
to give

pt =
(
µ − 1

η1

)
pt−1 − µ

η1
pt−2 − φ

µλη1

∞∑
i=0

ηi2Etxt+i + at −
1
η1
at−1. (12.23)

At first sight, therefore, it may not appear that the Dornbusch model has sticky
prices as there are no lags in the model apart from the change in price, and this
depends on current, and not lagged, excess demand. Nonetheless, it is clear
from the solution, equation (12.23), that the dynamic behavior of the price level
is quite complex and involves second-order lags.

12.7.2 Monetary Policy

First we consider the effect on the exchange rate of a temporary unanticipated
increase in the money supply in period t in which mt increases from m0 to
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m1. In period t+1 the money supply is expected to return permanently tom0.
The money supply appears in both at and bt , and hence in xt . We set all of the
other variables in xt equal to zero. We can therefore write

xt =
(
µβθ
λ

− 1
)
mt + µmt−1

=
(
µβθ
λ

− 1
)
m1 + µm0,

Etxt+1 =
(
µβθ
λ

− 1
)
m0 + µm1,

Etxt+i =
(
µβθ
λ

− 1
)
m0 + µm0, i > 1.

Prior to period t we set st−i = m0 (i > 0). Substituting for xt and Etxt+i in
equation (12.19), the exchange rate in period t is

st =m0 + δm1.

As η2 < 1, we have δ = ((1+αθ−η2)/λη1) > 0, and so a temporary change in
the level of the money supply in period t causes the exchange rate to depreciate.

We now consider a permanent, but still unanticipated, increase in the money
supply in period t. We assume that prior to the policy change it was expected
that st = m0, its previous long-run value. After the change the new long-run
value of the exchange rate is s =m1. We focus on what happens to the exchange
rate in period t. In this case,

xt =
(
µβθ
λ

− 1
)
m1 + µm0,

Etxt+i =
(
µβθ
λ

− 1
)
m1 + µm1, i > 0,

st = 1
η1
m0 − 1

µλη1

{(
µβθ
λ

− 1
)
m1 + µm0

+
∞∑
i=1

ηi2
[(
µβθ
λ

− 1
)
m1 + µm1

]}

=m1 +ϕ(m1 −m0),

where ϕ = ((λ − 1)/λη1) > 0 if λ > 1. Thus, if λ > 1, in period t the
exchange rate overshoots its long-run value of m1. This is the discrete-time
equivalent of the well-known overshooting property of the Dornbusch model.
After period t the exchange rate smoothly approaches its new long-run value
m1 in geometrically declining steps.

To illustrate the effect of monetary policy on the exchange rate and on the
price level we use numerical simulation. We analyze unanticipated temporary
and permanent increases in the money supply, and anticipated temporary and
permanent increases in the money supply that we assume occur in period
t + 5. The outcomes for the exchange rate and the price level are, together
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Figure 12.11. An unanticipated temporary money-supply shock.
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Figure 12.12. An unanticipated permanent money-supply shock.
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Figure 12.13. An anticipated temporary money-supply shock.
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Figure 12.14. An anticipated permanent money-supply shock.
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Figure 12.15. An unanticipated temporary fiscal shock.

with the money supply, shown in figures 12.11–12.14. The notation used in
figures 12.11–12.22 is that “m” denotes a money shock and “g” a fiscal shock,
“u” denotes unanticipated and “a” anticipated, “t” denotes temporary and “p”
permanent. Thus “mut” is a money shock that is unanticipated and temporary.

The money-supply increases cause the exchange rate to depreciate and the
price level to increase. The price level adjusts more slowly than the exchange
rate. For a permanent shock the exchange rate overshoots its new long-run
value, but the price level, being slower to respond, does not. Both the exchange
rate and the price level respond instantly to an anticipated future change in the
money supply.

12.7.3 Fiscal Policy

This causes a shift in the aggregate demand function and is captured by a
change in g. An increase in world demand may be captured by a change in p∗t .
As both variables enter through at , when all other variables are constant, we
may consider the effect of a change in xt = at . If there is a temporary increase
in at in period t from a0 to a1, then, in period t,

st = a0 − 1
µλη1

(a1 − a0).

Hence, there is a temporary appreciation of the exchange rate. After period t
the exchange rate slowly returns to a0 over time.

If the change in at is permanent, then st = a1, i.e., the exchange rate jumps
in period t to its new long-run value. Figures 12.15–12.18 depict simulations
of the effect on the exchange rate and price level of temporary and permanent,
unanticipated and anticipated positive fiscal shocks.

Following a positive fiscal shock the exchange rate appreciates and the price
level increases. The response of the exchange rate is much stronger and faster
than that of the price level.

12.7.4 Comparison of the Dornbusch and Monetary Models

The monetary model may be obtained from the Dornbusch model by imposing
(i) instantaneous price-level adjustment, which implies that θ → ∞, and hence
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Figure 12.16. An unanticipated permanent fiscal shock.

−0.2
−0.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 2 4 6 8 10 12 14 16

gat
p
s

Figure 12.17. An anticipated temporary fiscal shock.
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Figure 12.18. An anticipated permanent fiscal shock.

dt = yt ; and (ii) perfect substitutability between domestic and foreign goods,
which implies that α→∞, and reduces the aggregate demand equation to PPP.

It then follows that µ → 0, φ → 1, and hence η1 → ∞ and η2 → (λ/(1 + λ)).
As a result, the exchange rate in the Dornbusch model would be determined by

st = − 1
1+ λ

∞∑
i=0

(
λ

1+ λ
)i
Etxt+i.

Following a permanent change in xt the exchange rate would now jump
instantly to its new long-run equilibrium.
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In the monetary model xt is defined differently. As µ = 0, it is

xt = −λbt = yt −mt − λR∗t +ut.
Hence, in the absence of at , neither fiscal policy nor foreign demand have any
explicit effect in the monetary model.

If in the Dornbusch model only θ → ∞ and not α, so that demand is exoge-
nous, then µ → 0 but φ→ 1+ (β/αλ). As a result, in equation (12.18) we would
have

f(L) = λ−
(

1+ λ+ β
αλ

)
L.

The single root is L = 1/(1 + (1/λ) + (β/αλ)) = η < 1, which is unstable. The
solution for the exchange rate then becomes

st = − 1
1+ (1/λ)+ (β/αλ)

∞∑
i=0

ηiEtxt+i.

This solution differs only slightly from that of the monetary model, the
difference being due to the different parameters.

12.8 The Monetary Model with Sticky Prices

We have seen that the Dornbusch model introduces price stickiness as a result
of assuming imperfect substitutability between domestic and foreign goods
and an excess-demand price equation. An alternative to the Dornbusch model,
which makes the model closer to those considered in earlier chapters, is to
introduce price stickiness into the monetary model. This may be achieved by
assuming that PPP holds only in the long run and that in the short run prices are
determined by an inflation equation like those derived in chapter 9, which are
based on the assumption of imperfect price flexibility. We denote the optimal
long-run price level for the domestic economy in the long run as p#

t , which, due
to long-run PPP, satisfies

p#
t = st + p∗t ,

where p∗t is the foreign price level. We then replace the optimal price in our ear-
lier inflation equation by p#

t . The inflation equation for the domestic economy
may then be written as

∆pt = α(p#
t − pt−1)+ βEt∆pt+1

= (1−α− β)π +α(st + p∗t − pt−1)+ βEt∆pt+1,

where π is the long-run rate of inflation in the domestic economy.
Assuming a small open economy, the other equations are the money-demand

function and the UIP condition:

mt = pt +yt − λRt,
Rt = R∗t + Et∆st+1.
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If we eliminate Rt from the money-demand and UIP conditions we obtain

pt +yt −mt = λ(R∗t + Et∆st+1).

This gives two dynamic equations in two variables, pt and st ; mt , yt , and R∗t
are exogenous variables. Rewriting the price equation, the model becomes

−βEtpt+1 + (1+ β)pt − (1−α)pt−1 −αst = (1−α− β)π +αp∗t ,
pt − λEtst+1 + λst =mt −yt + λR∗t .

The long-run solution is the same as for a small-economy version of the mon-
etary model in whichR∗t is treated as an exogenous variable. Hence, the long-run
solutions for the price level and the exchange rate are

p = s + p∗,
s = y −m+ p∗ − λ(R∗ +π∗ −π),

where π∗ is the foreign long-run rate of inflation.
The short-run solutions may be obtained by using the lag operator and

eliminating pt to give the reduced form of st :

h(L)st = xt,
where

xt = at + g(L)bt,
at = (1−α− β)π +αp∗t ,
bt =mt −yt + λR∗t ,

h(L) = (1−α)λL− [α+ λ(2−α+ β)]+ λ(1+ 2β)L−1 − βλL−2

= (1−α)λf(L)L−2,

f (L) = (L− η1)(L− η2)(L− η3),

g(L) = (1−α)L− (1+ β)+ βL−1,

and {ηi; i = 1,2,3} are the roots of the characteristic equation f(L) = 0. As
f(1) = −(α/((1−α)λ)) < 0, either all three roots must be stable, or only one of
them is. For all three roots to be stable, and hence greater than unity—assuming
they are all positive—we require that their product is greater than unity, but
this is η1η2η3 = β/(1 − α), which is positive but not necessarily greater than
unity. We therefore assume that only one root is stable and two are unstable,
i.e., η1 � 1 and η2, η3 < 1. The solution for st may then be written as

st = 1
η1
st−1 − 1

(1−α)(η2 − η3)

[
η2

∞∑
i=0

ηi2Etxt+i − η3

∞∑
i=0

ηi3Etxt+i
]
.

Figures 12.19–12.22 depict simulations of the effect on the exchange rate
and price level of temporary and permanent, unanticipated and anticipated
increases in the money supply.

These results are very similar to those for the Dornbusch model. Once again
the exchange rate overshoots following a permanent unanticipated increase in
the money supply, but does not do so for an anticipated permanent increase.
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Figure 12.19. An unanticipated temporary money-supply shock.
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Figure 12.20. An unanticipated permanent money-supply shock.
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Figure 12.21. An anticipated temporary money-supply shock.
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Figure 12.22. An anticipated permanent money-supply shock.
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12.9 The Obstfeld–Rogoff Redux Model

None of the exchange-rate models considered so far is an intertemporal DGE
model with explicit microfoundations. The Obstfeld–Rogoff redux model (1995)
is one of the first attempts to provide such a model. (Redux means revived or
brought back; presumably indicating, in this case, that exchange-rate dynamics
have been brought back into the DGE framework.) The aim is to do so with-
out sacrificing the insights of previous approaches. The basic redux model is a
two-country model with monopolistic competition in goods markets and flexi-
ble prices. We consider two variants: one with sticky prices, the other a small-
country version. Although we follow closely the analysis of Obstfeld and Rogoff,
we keep in mind the need to relate the model to the general framework used
in previous chapters. This entails certain unimportant differences from their
model.

12.9.1 The Basic Redux Model with Flexible Prices

12.9.1.1 Preferences, Technology, and Market Structure

We assume that the world consists of two countries. In this two-country world
there is a continuum of individual producer-households each identified by an
index z ∈ [0,1], and each the sole world producer of a single differentiated
good z. The home country consists of producers who are differentiated from
each other by their label, which takes a value on the interval [0, n] and the
foreign country which consists of the remaining (n,1] producers. Domestic
household consumption is given by ct(z), foreign household consumption is
c∗t (z), pt(z) is the price of good z in terms of domestic currency, and p∗t (z)
is its price in terms of foreign currency. An unusual, but clever, feature of the
redux model is the way that the supply side is formulated. Output of good
z, which is given by yt(z), is produced by households who only use labor in
production. Instead of specifying a production function explicitly, production
is assumed to be negatively related to leisure and capital is implicitly assumed
to be fixed, and so is omitted entirely. As a result, neither work nor leisure is
included explicitly.

It is assumed that domestic and foreign households have identical prefer-
ences and differ only in the good they produce. For a domestic household
producing good z but consuming all goods this is given by

Ut =
∞∑
j=0

βj
[

ln ct+j + φ
1− ε

(Mt+j
Pt+j

)1−ε
− 1

2γyt(z)
2
]
, (12.24)

where ε > 0 and ct is an index of total consumption given by the CES function

ct =
[∫ 1

0
ct(z)(σ−1)/σ

]σ/(σ−1)
, σ > 1. (12.25)
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Mt is the stock of money held by each domestic household and Pt is a general
price index given by

Pt =
[∫ 1

0
pt(z)1−σ

]1/(1−σ)
. (12.26)

The last term in the utility function reflects utility from leisure, which is
inversely related to the work required to produce good z by a household and
is assumed to be proportional to yst (z), the quantity produced. This set-up is
similar to our discussion of open-economy models in chapter 7, but is based
on continuous, instead of discrete, aggregator functions.

Every good is tradeable and is priced in domestic currency. It is also assumed
to satisfy the “law of one price” so that there is a single world price,

pt(z) = Stp∗t (z),
where St is the exchange rate (the domestic price of foreign currency). Hence

Pt =
[∫ n

0
pt(z)1−σ +

∫ n
0
Stp∗t (z)

1−σ
]1/(1−σ)

(12.27)

and
Pt = StP∗t ,

where P∗t is the foreign general price level. Thus PPP holds for consumer price
indices, but only because both countries consume identical commodity baskets.

The budget constraints for domestic and foreign households are

Bt+1 +Mt+1 + Ptct + PtTt = pt(z)yt(z)+ (1+ Rt)Bt +Mt, (12.28)

B∗t+1 +M∗
t+1 + P∗t c∗t + P∗t T∗t = p∗t (z)y∗t (z)+ (1+ R∗t )B∗t +M∗

t , (12.29)

where Bt is the nominal stock of privately issued bonds in terms of domestic
currency, Tt is real taxes paid to the domestic government (or real transfers
if Tt < 0), and Rt is the nominal interest rate. An asterisk denotes the foreign
equivalent. Because there are two countries, bonds are privately issued, and as
Pt = StP∗t , there is a zero net-supply bond constraint given by

nBt + (1−n)B∗t = 0.

The domestic and foreign government budget constraints are

Ptgt = PtTt +∆Mt+1, (12.30)

P∗t g
∗
t = P∗t T∗t +∆M∗

t+1, (12.31)

where

gt =
[∫ 1

0
gt(z)(σ−1)/σ

]σ/(σ−1)

and gt(z) is household consumption of the government-provided good z.
Government expenditures do not generate household utility. The government
budget constraints assume that government expenditures are financed by
lump-sum taxes and seigniorage.



�

�

“wickens” — 2007/10/15 — 13:08 — page 341 — #359
�

�

�

�

�

�

12.9. The Obstfeld–Rogoff Redux Model 341

Given the CES total consumption index, equation (12.25), and the utility func-
tion, it follows from the results in chapter 7 that the domestic household
demand for good z is

ct(z) =
[
pt(z)
Pt

]−σ
ct,

and the general price index is determined by equation (12.26). For convenience,
government provision of good z is assumed to have the same form. Total world
private demand cW

t is obtained by summing over all households, then domestic
households and the 1−n foreign households, with the result that

cW
t = nct + (1−n)c∗t . (12.32)

Similarly, total world government demand gW
t is

gW
t = ngt + (1−n)g∗t .

The total world demand for good z is the sum of private household demand
and government consumption, i.e., it is

yt(z) =
[
pt(z)
Pt

]−σ
(cW
t + gW

t ). (12.33)

Due to producer monopoly power, the demand function slopes downward. We
note that although PPP holds for consumer price indices due to identical con-
sumer preferences, it does not hold for national output deflators unless n = 1

2 .
This is because production in the two countries is different.

Finally, we assume that UIP holds and so

1+ Rt = St+1

St
(1+ R∗t ).

It follows that rt , the real interest rate, satisfies

1+ rt = Pt
Pt+1

(1+ Rt)

= Pt
Pt+1

St+1

St
(1+ R∗t )

= P∗t
P∗t+1

(1+ R∗t )

= 1+ r∗t ,
and hence there is real interest parity.

12.9.1.2 Individual Maximization

The problem for each household is to maximize intertemporal utility, equa-
tion (12.24), with respect to {ct+j, yt+j(z), Bt+j,Mt+j, yt+j(z)} subject to the
household and government budget constraints, equations (12.28) and (12.30),
and aggregate demand, equation (12.33), while taking total world demand,
cW
t + gW

t , as given. Foreign households face a corresponding problem.
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The domestic budget constraint can be simplified by eliminating p(z) and
p∗(z) to give

Bt+1+Mt+1+Ptct+PtTt = Ptyt(z)(σ−1)/σ (cW
t +gW

t )
1/σ+(1+Rt)Bt+Mt. (12.34)

The Lagrangian for the domestic resident can now be written as

L =
∞∑
j=0

βj
[

ln ct+j + φ
1− ε

(Mt+j
Pt+j

)1−ε
− 1

2γyt+j(z)
2
]

+ λt+j[Pt+jyt+j(z)(σ−1)/σ (cW
t+j + gW

t+j)
1/σ + (1+ Rt+j)Bt+j

− Bt+j+1 −∆Mt+j+1 − Pt+jct+j − Pt+jTt+j].
The first-order conditions are

∂L
∂ct+j

= βj 1
ct+j

− λt+jPt+j = 0, j � 0,

∂L
∂yt+j(z)

= −βjγyt+j(z)

− λt+j σ − 1
σ

Pt+jyt+j(z)−1/σ (cW
t+j + gW

t+j)
1/σ = 0, j � 0,

∂L
∂Mt+j

= βjφM
−ε
t+j
P1−ε
t+j

+ λt+j − λt+j−1 = 0, j > 0,

∂L
∂Bt+j

= λt+j(1+ Rt+j)− λt+j−1 = 0, j > 0.

It follows that

βct(1+ rt+1)
ct+1

= 1,

Mt+1

Pt+1
=
[
φ
ct+1

Rt+1

]1/ε
,

yt(z)(σ+1)/σ = σ − 1
σγ

c−1
t (c

W
t + gW

t )
1/σ .

Similarly, for the foreign country,

βc∗t (1+ rt+1)
c∗t+1

= 1,

M∗
t+1

P∗t+1
=
[
φ
c∗t+1

R∗t+1

]1/ε
,

y∗t (z)
(σ+1)/σ = σ − 1

σγ
c∗−1
t (cW

t + gW
t )

1/σ .

The consumption Euler equations are familiar, as are the money-demand func-
tions. The output equations reflect the fact that the marginal utility of one extra
unit of output equals the marginal disutility of the loss of leisure required to
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produce it. If goods were perfect substitutes, and hence σ → ∞, the home
output equation would become

lim
σ→∞yt(z) =

1
γct

> yt(z).

This exhibits only the supply-side consumption–leisure trade-off and not the
effect of world demand on output. It also reveals that, due to monopoly
distortions, output is lower than the social optimum.

Consumption is derived from the household and government budget con-
straints as

ct = (1+ Rt)BtPt − (1+πt+1)
Bt+1

Pt+1
+ pt(z)yt(z)

Pt
− gt, (12.35)

c∗t = (1+ R∗t )
B∗t
P∗t

− (1+π∗t+1)
B∗t+1

P∗t+1
+ p

∗
t (z)y

∗
t (z)

P∗t
− g∗t , (12.36)

where 1+πt+1 = Pt+1/Pt and 1+π∗t+1 = P∗t+1/P
∗
t .

12.9.1.3 The Baseline Long-Run Model

In static equilibrium, consumption, real bonds, and the stock of real money
are constant. Consequently, from the Euler equation, the common real rate of
return is

r = r∗ = θ,
where β = 1/(1+θ). Using the condition that the net supply of bonds is zero to
eliminate B∗ = −(n/(1−n))B, steady-state consumption in the two countries
is

c = r B
P
+ p(z)y(z)

P
− g, (12.37)

c = −r nB
(1−n)P∗ +

p∗(z)y∗(z)
P∗

− g∗. (12.38)

In the special case that forms our baseline model, which is to be used below
for the purposes of comparison, we impose the restriction that there is nei-
ther debt nor government expenditures so that B = B∗ = g = g∗ = 0.
Equations (12.37) and (12.38) then reduce to

ct = p(z)y(z)P
,

c∗t =
p∗(z)y∗(z)

P∗
,

and the output equations become

y(z)(σ+1)/σ = σ − 1
σγ

c−1[nc + (1−n)c∗]1/σ ,

y∗(z)(σ+1)/σ = σ − 1
σγ

c∗−1[nc + (1−n)c∗]1/σ .
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Further, the balance of payments consists solely of trade, and as this must be in
balance, consumption equals income, i.e., c = y(z) and c∗ = y∗(z). It follows
that

y(z)(2σ+1)/σ = σ − 1
σγ

[ny(z)+ (1−n)y∗(z)]1/σ ,

y∗(z)(2σ+1)/σ = σ − 1
σγ

[ny(z)+ (1−n)y∗(z)]1/σ ,

from which it can be shown that

y(z) = y∗(z) = c = c∗ = cW =
[
σ − 1
σγ

]1/2
.

Hence
M
P
= M

∗

P∗
=
[
φy(z)
1− β

]1/ε
.

Moreover, it also follows that p(z) = P and p∗(z) = P∗ which, given PPP,
implies that p(z) = Sp∗(z)—in other words, the law of one price holds. PPP
also implies that

S = M
M∗ ,

i.e., the exchange rate depends on the relative money supplies. Thus the base-
line model has different predictions about the long-run determinants of the
exchange rate from previous models. For example, in the monetary model
relative outputs also affect the exchange rate.

12.9.2 Log-Linear Approximation

A convenient way of analyzing the redux model in more detail is to employ a
log-linear approximation about the long-run solution to the baseline model (see
also Obstfeld and Rogoff 1996). We denote proportionate deviations from the
baseline solution by x#

t = ln(xt/x), where x is the baseline solution.
Log-linearizing the model gives

• PPP,

S#
t = P#

t − P∗#
t ;

• domestic and foreign general price levels, equation (12.27),

P#
t = np#

t (z)+ (1−n)[S#
t + p∗#

t ],

P∗#
t = n[p∗#

t (z)− S#
t ]+ (1−n)p∗#

t ;

• world demand functions (12.33), where ϕ = gW/cW,

y#
t (z) = σ[P#

t − p#
t (z)]+ cW#

t +ϕgW#
t ,

y∗#
t (z) = σ[P∗#

t − p∗#
t (z)]+ cW#

t +ϕgW#
t ;
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• output (labor supply),

(1+ σ)y#
t (z) = −σc#

t + cW#
t +ϕgW#

t ,

(1+ σ)y∗#
t (z) = −σc∗#

t + cW#
t +ϕgW#

t ;

• consumption,

c#
t+1 = c#

t + (1− β)r #
t ,

c∗#
t+1 = c∗#

t + (1− β)r #
t ;

and

• money demand,

m#
t − p#

t =
1
ε

[
c#
t − β

(
r #
t +

P#
t+1 − P#

t
1− β

)]
,

m∗#
t − p∗#

t = 1
ε

[
c∗#
t − β

(
r #
t +

P∗#
t+1 − P∗#

t
1− β

)]
.

Finally, we form a consolidated world budget constraint which we log-
linearize. Population-weighting the country budget constraints and using equa-
tions (12.34) and (12.32) gives the world equilibrium condition:

cW
t = n

pt(z)yt(z)
Pt

+ (1−n)p
∗
t (z)y

∗
t (z)

P∗t
−ϕgW

t .

Log-linearizing gives

cW#
t = nc#

t + (1−n)c∗#
t

= n[p#
t (z)+y#

t − P#
t ]+ (1−n)[p∗#

t (z)+y∗#
t − P∗#

t ]−ϕgW
t .

12.9.2.1 The Long-Run Solution

First, we form the long-run consolidated budget constraint by population-
weighting the log-linearized budget constraints, equations (12.35) and (12.36),
where we assume that bt = Bt/Pt , b∗t = B∗t /P

∗
t , B = B∗ = 0, π = 0, and

ψ = R(b/cW). This gives

c# = ψb# + p#(z)+y#(z)− P# −ϕg#,

c∗# = ψb∗# + p∗#(z)+y∗#(z)− P∗# −ϕg∗#.
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We can now derive the long-run solution in terms of deviations from the
baseline solution. This is

c# = 1
2σ
[(1+ σ)ψb# − (1−n+ σ)ϕg# + (1−n)ϕg∗#],

c∗# = 1
2σ

[
− n(1+ σ)ψ

1−n b# +nϕg# − (n+ σ)ϕg∗#
]
,

cW# = −1
2ϕg

W#,

y#(z) = 1
1+ σ (

1
2ϕg

W# − σc#),

y∗#(z) = 1
1+ σ (

1
2ϕg

W# − σc∗#),

p#(z)− P# = − 1
2σ
[(1−n)ϕ(g# − g∗#)−ψb#],

p∗#(z)− P∗# = n
2(1−n)σ [(1−n)ϕ(g

# − g∗#)−ψb#].

Further,

p#(z)− [S# + p∗#(z)] = − 1
σ
(y# −y∗#)

= 1
1+ σ (c

# − c∗#),

P# = M# − 1
ε
c#,

P∗# = M∗# − 1
ε
c∗#,

S# = M# −M∗# − 1
ε
(c# − c∗#).

The last equation shows that in the long run the exchange rate depends on rel-
ative money supplies and consumption. This is similar to the monetary model,
and differs only because consumption replaces output.

Monetary policy has no effect in the long run on consumption or output,
but prices change in equal proportion. A domestic fiscal expansion cuts pri-
vate domestic consumption but raises foreign consumption. The net effect is
to reduce world consumption. World output is unaffected.

12.9.2.2 Short-Run Dynamics

If prices are perfectly flexible, as has been implicitly assumed so far, then the
world economy is always in its steady state. If, however, it is assumed that prices
are sticky in the short-run due to monopoly power, then it is more profitable
to meet an unexpected demand increase by raising output.

Following an unexpected permanent domestic monetary expansion, the
domestic interest rate decreases and, despite sticky prices, UIP causes the
exchange rate to depreciate to its new long-run value, and not to overshoot
this value. This causes the relative price of foreign goods to increase, which
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generates a temporary increase in the demand for domestic goods, and hence
in domestic output. Due to consumption smoothing, domestic residents save
part of the increase in income causing a current-account surplus and an increase
in foreign asset holding. In the long run there is a shift from work to leisure,
which causes a return of output and consumption to their original levels.

12.9.3 The Small-Economy Version of the Redux Model with Sticky Prices

Like the monetary model, the redux model assumes two identical economies.
A small-economy version of the redux model with sticky prices akin to the
Mundell–Fleming and Dornbusch models has been proposed by Obstfeld and
Rogoff. The prices of nontraded goods are assumed to be sticky and those
of traded goods are assumed to be flexible. The economy has a nontraded-
consumption-goods sector that is monopolistically competitive with preset
nominal prices. But there is a single homogeneous perfectly competitive trad-
able good that sells for the same flexible price in all countries. In each period
the representative domestic resident is endowed with a constant quantity yT

of the traded good, and has monopoly power over the production of one of the
nontraded goods yN

t (z), z ∈ [0,1].
The utility function of the representative producer is

L =
∞∑
j=0

βj
[
ρ ln cT

t+j + (1− ρ) ln cN
t+j +

φ
1− ε

(Mt+j
Pt+j

)1−ε
− γ

2
yN
t+j(z)

2
]
,

where now β = 1/(1 + r), cT
t is consumption of the traded good, and cN

t is an
index of consumption of the nontraded good, which is given by

cN
t =

[∫ 1

0
cN
t (z)

(σ−1)/σ
]σ/(σ−1)

, σ > 1. (12.39)

The general price index Pt is

Pt = (P
T
t )ρ(P

N
t )1−ρ

ρρ(1− ρ)1−ρ , (12.40)

with PT
t = StPT∗

t and

PN
t =

[∫ 1

0
pN
t (z)

1−σ
]1/(1−σ)

,

where pN
t (z) is the price of the nontraded good. The demand for the nontraded

good is

yN
t (z) =

[pN
t (z)
PN
t

]−σ
cNA
t , (12.41)

where cNA
t is the aggregate domestic consumption of nontraded goods, which

is taken as given, and it is assumed that there are no government expenditures.
The budget constraint is written as

PT
t bt+1+Mt+1+PT

t c
T
t +PN

t c
N
t +PT

t Tt = PT
t y

T+pN
t (z)y

N
t (z)+ (1+ r)PT

t bt +Mt,
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where real variables, including the real interest rate r , are denominated in terms
of the price of tradeables, and bt is the real stock of privately issued bonds. As
there are no government expenditures, the government budget constraint is

0 = PT
t Tt +∆Mt+1.

The Lagrangian is

L =
∞∑
j=0

βj[ρ ln cT
t+j + (1− ρ) ln cN

t+j +
φ

1− ε
(Mt+j
Pt+j

)1−ε
− 1

2γy
N
t+j(z)

2]

+ λt+j[PT
t+jy

T + pN
t+jy

N
t+j(z)

(σ−1)/σ (cNA
t+j)

1/σ + (1+ r)PT
t+jbt+j

+Mt+j − PT
t+j+1bt+j+1 −Mt+j+1 − PT

t+jc
T
t+j − PN

t+jc
N
t+j − PT

t+jTt+j].

The first-order conditions are

∂L
∂cT
t+j

= βj ρ
cT
t+j

− λt+jPT
t+j = 0, j � 0,

∂L
∂cN
t+j

= βj 1− ρ
cN
t+j

− λt+jPN
t+j = 0, j � 0,

∂L
∂yN

t+j(z)
= −βjγyN

t+j(z)− λt+j
σ − 1
σ

PN
t+jy

N
t+j(z)

−1/σ (cNA
t+j)

1/σ = 0, j � 0,

∂L
∂Mt+j

= βjφM
−ε
t+j
P1−ε
t+j

+ λt+j − λt+j−1 = 0, j > 0,

∂L
∂bt+j

= λt+j(1+ r)PT
t+j − λt+j−1PT

t+j−1 = 0, j > 0.

Hence

cT
t+1 = cT

t , (12.42)

cN
t =

1− ρ
ρ

PT
t

PN
t
cT
t , (12.43)

Mt+1

Pt+1
=
[
φ
PT
t+1c

T
t+1

ρPt+1

]1/ε[
(1+ r)P

T
t+1

PT
t
− 1

]−1/ε
, (12.44)

yN
t (z)

(σ+1)/σ = σ − 1
σγ

(cN
t )
−1(cNA

t )
1/σ . (12.45)

As the output of traded goods is fixed, cT = yT and hence the current account
is in permanent balance regardless of shocks to money or nontraded goods pro-
ductivity. And as cN

t = yN
t (z) = cNA

t for all z, from equations (12.43) and (12.45),
in the steady state,

cN = yN(z) =
[
(σ − 1)(1− ρ)

σγ

]1/2

= 1− ρ
ρ

PT

PN
yT.
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Hence, steady-state consumption and output are unaffected by money. From
equations (12.40) and (12.45), in the steady state the price level P is proportional
to M and

PT = υM(yT)−(1−ρ),

where ν > 0. It therefore follows that the steady-state exchange rate is

S = υ M
(yT)(1−ρ)PT∗ .

Increases in the stock of money therefore cause an equal depreciation in the
exchange rate, and increases in traded goods output and foreign tradeables
cause the exchange rate to appreciate.

As nontraded goods prices are assumed to be fixed in the short run but traded
goods prices are flexible, taking a log-linear approximation about the steady
state gives the short-run money-demand function

M#
t − P#

t =
1
ε

[
PT#
t − P#

t −
1
r
∆PT#

t+1

]
,

and, from equation (12.40), P#
t = ρPT#

t . We then have

PT#
t = η(PT

t+1 + rεM#
t ),

where 0 < η = [1+ r + rρ(ε− 1)]−1 < 1 if ε > 1. Hence

S#
t = PT#

t − PT∗#
t

= ηS#
t+1 + ηrεM#

t + PT∗#
t − ηPT∗#

t+1 . (12.46)

Equation (12.46) gives the short-run response of the exchange rate to a tempo-
rary change in the money supply and in the foreign price of tradeables. We have
shown already that a permanent change in the money stock causes an equal
increase in the steady-state exchange rate. Equation (12.46) implies a different
long-run solution. This is because the price of nontraded goods is assumed to
be fixed, whereas in the correct solution derived previously, nontraded goods
prices were flexible. In order to examine the short-run response to a permanent
increase in the money supply, we assume that the exchange rate fully adjusts
to its new long-run level by period t + 1 as a result of changes in nontraded
goods prices, so that S#

t+1 = M#
t . In period t, therefore,

S#
t =

1+ r + r(ε− 1)
1+ r + rρ(ε− 1)

M#
t > M

#
t .

As ρ < 1, the exchange rate initially overshoots its new long-run value.

12.10 Conclusions

In this chapter we have examined the determination of the nominal exchange
rate. We began by tracing the emergence of floating exchange rates as a response
to the failures of previous international monetary systems. We argued that even
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in a fixed-exchange-rate system like Bretton Woods it may be necessary to adjust
the exchange parity in order to restore competitiveness. The main advantage
of flexible exchange rates is that competitiveness is automatically maintained.
If prices are perfectly flexible, this occurs very quickly because the exchange
rate jumps to its new equilibrium level following a shock to the system. As a
result, fiscal and monetary shocks are crowded out. But if prices are sticky,
then a theoretical prediction common to these models is that adjustment to a
permanent monetary shock is slower, and that the exchange rate is excessively
volatile in the sense that initially it overshoots its long-run value. A permanent
fiscal expansion is quickly crowded out due to the exchange rate appreciating
and causing an equivalent fall in net exports.

Modern flexible-exchange-rate models assume no capital controls and perfect
capital flexibility. As a result, the nominal exchange rate is determined in these
models by current and future expected interest differentials between countries.
The interest differential may be determined directly through monetary policy
being conducted via interest rates, or indirectly through money-supply target-
ing. Most of the models we have discussed assume that monetary policy is
conducted via money-supply targeting; they differ over what other variables
affect the interest differential.

Another common assumption is PPP. Unlike UIP, this assumption is strongly
at variance with the empirical evidence as a consequence of price stickiness.
This suggests that, at best, PPP should be a long-run property, as in the sticky-
price monetary model proposed in this chapter. Alternatively, a distinction
should be drawn between the pricing of tradeables through the law of one price
(LOOP), and the pricing of nontradeables as in the redux model. Recent research
on pricing to market—which was discussed in chapter 9—has also questioned
the LOOP (see Betts and Devereux 1996, 2000; Devereux 1997; Devereux and
Engel 2003). For a contrary view see Obstfeld and Rogoff (2000), where it is
argued that it is the nontraded component in tradeables that causes the appar-
ent failure of the LOOP. Pricing-to-market is equivalent to making the foreign
price of exports in the small-economy version of the redux model (i.e., PT∗

t+1) an
exogenous variable, but this does not change the conclusions we have reached.

The first generation of flexible-exchange-rate models such as the Mundell–
Fleming, monetary, and Dornbusch models lack the microfoundations of the
new generation of DGE models pioneered by the redux model. Nonetheless,
they still act as a valuable benchmark against which to compare the predictions
of DGE models, and, given the complexity of open-economy DGE models, they
have the advantage of being much easier to work with.

A common feature of all of these models is the assumption that output is
fixed. Because the exchange rate adjusts so much faster than output or prices,
this is a convenient assumption to make. Accordingly, if the aim is to analyze
the behavior of the exchange rate in the short term, then the first-generation
models may provide a good approximation. The main advantage of DGE models
is their superior treatment of capital accumulation, which affects the dynamic
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behavior of consumption and output. In the short run this is much less of
an advantage. This may partly account for the lack of DGE models with both
flexible nominal exchange rates and capital accumulation. For reviews of the
“new open-economy macroeconomics,” which attempt to synthesize Keynesian
nominal rigidities and intertemporal open-economy sticky-price models, see
Lane (2001) and Obstfeld (2001).

In conclusion, we draw attention to the fact that we have not considered
target-zone models of the exchange rate. This is when the aim is to constrain
movements in a flexible exchange rate to lie within a predetermined band. There
are several reasons for this omission. First, target-zone models became popular
during the ERM period in the late 1970s and the 1980s. With the demise of the
ERM, they have generally fallen out of use except for a few countries tied loosely
to the U.S. dollar. Second, it was found that exchange rates did not behave in
the manner predicted by the target-zone models. Rather than go outside the
target zone, exchange rates are predicted to approach the edge of the zone
asymptotically; this is known as the “smooth-pasting” property of target-zone
models. The implication is that the exchange rate will tend to lie mainly on the
edge of the zone. In practice, however, it has been found that exchange rates
tend to lie in the middle of the zone. This may perhaps be due, at least in part,
to the vulnerability of the exchange rate to speculative attacks when near the
edge of the zone. Third, the mathematics of target-zone models is complex and
involves different mathematical methods from the rest of our analysis. For a
discussion of target-zone models see Krugman (1991) and Flood and Garber
(1984, 1991).
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Monetary Policy

13.1 Introduction

Initially, in our development of the DGE model, we considered an economy
without money. As a result, all prices were relative prices (prices relative to
the price of consumption). These included the real wage and the real interest
rate and later, when we extended the analysis to the open economy, the terms
of trade and the real exchange rate. In general, changes in relative prices have
real effects, i.e., they affect quantities. Once we included in the model outside
money (money supplied by government, usually through their account at the
central bank) and inside money (credit provided by the commercial banking
system), we had to include nominal prices and, in particular, the general price
level, together with nominal-wages and nominal interest rates, etc.

The main role of monetary policy is to control the general price level. Usually
this is expressed in terms of the rate of inflation. We have argued that in general
equilibrium the long run money is super-neutral, i.e., permanent money shocks
affect nominal variables such as the general price level, but not real variables
like output and consumption. Largely as a result of this, monetary policy is
commonly assigned to controlling the general price level or, more commonly,
inflation.

We have also argued that in the short run, when there is price stickiness,
money may have real effects. This allows money to be used for short-run out-
put stabilization too. A familiar argument, associated with monetarism and Mil-
ton Friedman (1968), is that the short-run effect of money on output is much
stronger than that of fiscal policy.

This raises the question of whether monetary policy should be assigned solely
to controlling inflation. A justification often given is the argument that a policy
instrument is required for each target variable and the general price level can
only be controlled in the long run by monetary policy. This argument is not
strictly correct. In order to achieve n (independent) targets, n policy instru-
ments will be needed. This could be achieved by assigning one instrument to
each target. It could also be achieved by using n linear combinations of the
instruments. In fact, this would be the general solution to the problem of opti-
mal control. The implication is that monetary policy could also be used in the
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short run for output stabilization. Nonetheless, since the literature on mone-
tary policy tends to focus on the control of inflation, this will also be our main
concern.

There is an even more fundamental question than the assignment issue: how
to use monetary policy to maximize social welfare. Our earlier discussion of
fiscal policy addressed this issue. In contrast, the implicit welfare function com-
monly associated with optimal monetary policy involves minimizing deviations
of inflation from target over a given time horizon. This is known as strict infla-
tion targeting. The principal variant on this is to minimize a weighted average
of inflation and output deviations. This is called flexible inflation targeting. We
consider to what extent either strict or flexible inflation targeting is equivalent
to maximizing social welfare as previously defined.

Monetary policy can be conducted in different ways and through the use of
different policy instruments. The principal methods are controlling the level or
the rate of growth of the money supply, controlling interest rates, or controlling
the nominal exchange rate, perhaps by maintaining a fixed exchange rate. The
choice depends on whether the aim is to control the price level or the rate of
inflation. It also depends on the effectiveness of the instrument: its controlla-
bility, the strength and predictability of the transmission mechanism, the time
horizon, and any (negative) spillover effects on other variables.

Another issue is whether monetary policy is discretionary or . In a rules-
based monetary policy, the monetary authorities are committed to setting the
policy instrument using a publicly known policy rule in which the instrument
depends on the current—or possibly the past or the expected future—state of
the economy. The Taylor rule is a well-known example of an interest rate rule
in which the official interest rate depends on the deviations of inflation and
the output gap from their targets. Under discretion, the interest rate is simply
announced by the monetary authority. Whether or not the monetary authority is
using a rule is, in practice, unknown. We consider which is preferable: discretion
or commitment to a rule.

The choice of nominal target—whether it is the price level or the rate of
inflation—is important. If we express the price-level target as a path along which
the price level grows at a constant rate, the implied rate of inflation would be
constant. Although price-level and inflation targeting may then appear to be
similar, there is an important difference. A temporary shock to inflation is a
permanent shock to the price level. Consequently, under inflation targeting a
temporary monetary shock may be accommodated (perhaps even ignored) by
monetary policy, but under price-level targeting it would be countered by mon-
etary policy. As a result, price-level targeting is more likely to require deflation,
and entail a loss of output, than inflation targeting. Ultimately, of course, the
choice of a price-level or an inflation target will depend on the objective function
of the policy maker. If this takes account of real effects, then inflation targeting
is more likely to be preferred to price-level targeting. For most of this chapter
we assume that this is the case.
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Monetary policy is strongly affected by the choice of exchange-rate regime—
whether the exchange rate is fixed or floating. This is why one must take account
of open-economy considerations when studying monetary policy. As we have
seen in chapter 12, tying the exchange rate to gold, as under the gold stan-
dard, or to another currency like the U.S. dollar, as under the Bretton Woods
and, implies that in the longer term the domestic rate of inflation is tied to
the price of gold or the U.S. rate of inflation, respectively. In other words, they
provide a nominal anchor. The aim of monetary policy then becomes that of
managing the currency in order to stay in the exchange-rate regime. In principle,
this simply requires monetary policy to be passive or accommodating. Unless
deliberately sterilized, a balance of payments deficit, for example, would auto-
matically produce a contraction in the supply of money, which would act to
restore current-account balance by raising the price level and improving com-
petitiveness. Were this not the case, sooner or later it would be necessary to
realign the exchange-rate parity to correct for the ensuing changes in competi-
tiveness due to an over-expansionary, or over-contractionary, monetary policy.
Current account balance could also be accomplished by fiscal as well as mon-
etary policy. It was in these circumstances that Keynesian economics, with its
emphasis on fiscal policy, flourished.

We have argued that the main reason for the eventual breakdown of the
Bretton Woods system was high U.S. inflation. This caused a deterioration in
U.S. competitiveness and brought about the generalized floating of exchange
rates, hence the loss of the nominal anchor. As a result, countries now had to
reestablish monetary control by formulating their own monetary policy.

It was at this point that monetarism came to be widely adopted as the pre-
ferred monetary policy. In the long run, the general price level is closely related
to the domestic quantity of money, and the rate of inflation is closely related to
the rate of growth of the money supply. Monetarism consists of controlling the
rate of growth of the money supply in order to deliver a corresponding rate of
inflation in the longer term. With a floating exchange rate a country may choose
its own rate of inflation. According to relative PPP, changes in competitiveness
due to differences in inflation rates are, in principle, automatically corrected by
the flexibility of the exchange rate.

Support for the emphasis on money in formulating monetary policy was pro-
vided by a large body of empirical evidence showing that, in the short term, real
variables, in particular real GDP, were strongly affected by monetary shocks.
Following initial work at the Federal Reserve Bank of St. Louis by Anderson and
Jordan (1968), which showed that monetary policy was far more important than
fiscal policy, Friedman (1968) formulated monetarism on the basis that money
affected output strongly for the first eighteen months but not thereafter. Forty
years of subsequent research into the importance of money shocks has served
to confirm these original findings: see, for example, Sims (1980), Christiano
et al. (1999), and Canova and De Nicolo (2005). However, it does not follow,
as initially assumed, that just because money shocks are important, monetary
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policy is best formulated by targeting the money supply, especially in an open
economy with a floating exchange rate.

While monetarism was successful in some countries, it was unsuccessful in
others. In part, the outcome depended on a country’s banking system and how
successfully money was controlled. Some countries, like Germany, were highly
successful, but others, such as the United Kingdom, failed to achieve the desired
rate of growth of the money supply. Another issue was the choice of which
measure of money to control. The most successful countries chose a narrow
definition of money closely related to the transactions demand for money. In
other countries, a broader measure of money was chosen that included interest-
bearing deposits, on the grounds that it better represented the liquid resources
available at short notice for expenditure. The problem was that, due to the
desire to save more in the form of time deposits, a tightening of monetary
policy through higher interest rates could lead to an increase in the quantity of
money held, rather than a decrease. An increase in money may then presage a
decrease rather than an increase in expenditures, and hence inflation.

As Germany was one of the more successful countries in pursuing mone-
tarism in Europe, many of its closest trading partners in Europe decided to
fix their currencies to the deutsches mark. This provided these countries with
a nominal anchor equal to the German rate of inflation. In effect, a new Bret-
ton Woods had been created based on the deutsches mark. This was called the
European Exchange Rate Mechanism (ERM).

As discussed in chapter 12, a complicating factor was that the Bretton Woods
system operated with controls on the international flow of capital. The break-
down of this system, and the increased reliance on market-determined prices
and quantities, was accompanied by the widespread removal of capital con-
trols. The determination of the exchange rate then came to be associated far
more with the capital account of the balance of payments than with the current
account. This altered the transmission mechanism of monetary policy and its
effect on the exchange rate. Consequently, the link between money growth, com-
petitiveness, and the exchange rate was greatly weakened. Instead, interest dif-
ferentials, brought about by monetary policy, caused large capital movements
that dominated the determination of the exchange rate.

If the money supply is exogenous, then, through the money market, interest
rates become endogenous. Consequently, the more successful a country is in
controlling its money supply, the more money-demand shocks are absorbed by
interest rates. And the more volatile interest rates are, the more volatile the
exchange rate becomes, with the consequent destabilizing effect on the real
economy. This was vividly illustrated in the United States during the period
1979–81 when monetary policy aimed to control the money supply. As a result,
interest rates became extremely volatile.

In practice, the key monetary instrument is the official interest rate, usually
the rate at which the central bank is willing to lend short term—mainly to com-
mercial banks—by rediscounting bills. Under monetarism, interest rates were
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set to achieve the money-supply target. The rate of growth of the money sup-
ply was, however, only an intermediate target; the final target of policy was
the rate of inflation (or perhaps, in the short term, output). Given the diffi-
culty many countries had in hitting the money-supply target, alternative ways
of conducting monetary policy were sought, including inflation targeting.

Inflation targeting first became popular in the 1990s. One of its first expo-
nents was New Zealand, a small open economy. Sweden and the United King-
dom, slightly larger open economies, rapidly followed. The aim is to set inter-
est rates to achieve a target rate of inflation. All three countries are very open
economies and have a history of large fluctuations in their exchange rates. It
is highly desirable that monetary policy in such countries not only provides
an effective nominal anchor, but also avoids increasing exchange-rate volatility
through large interest rate fluctuations. This suggests that interest rate changes
should be smoothed.

If the interest rate is exogenous, then the money supply becomes endoge-
nous and absorbs shocks to money demand. Nonetheless, a difference of opin-
ion about the significance of the money supply under inflation targeting has
emerged between the European Central Bank (ECB) on the one hand and other
central banks such as the U.S. Federal Reserve, the Bank of England, and the
Riksbank of Sweden on the other hand. The ECB appears to be alone among
central banks in still giving importance to the rate of growth of the money
supply. It treats the money supply as a second “pillar” in its monetary policy,
believing that it still signals spending power either because the money supply
represents liquid savings or because it reflects credit that has been extended.
In a perfect capital market, money is just one among a number of assets that
comprise total wealth. And since life-cycle theory relates consumption to total
wealth, there seems little reason in a perfect capital market to single out money
from other forms of wealth holding. In the United Kingdom, for example, with
the deregulation of capital markets, households increasingly raise credit against
their collateral in housing.

In this chapter we focus almost exclusively on monetary policy conducted
via inflation targeting. The analysis of inflation targeting is usually conducted
using a model based on a simplified form of the DGE model that consists of just
two equations: a price equation and an output equation. This is often referred
to as the New Keynesian model because, like the Keynesian model, the price
equation involves a trade-off between inflation and output. The difference is
that the trade-off is temporary, not permanent. The standard New Keynesian
model assumes a closed economy. We therefore amend the model to make it
suitable for an open economy with a flexible exchange rate.

We begin by considering the role of the Fisher equation in determining infla-
tion and use it to examine the question of price-level versus inflation targeting.
We then examine the effectiveness of monetary policy in the Keynesian and New
Keynesian models for both closed and open economies with floating exchange
rates. We compare a policy of discretion with that of commitment to a rule.
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Next we consider how to formulate an optimal monetary policy based on the
New Keynesian model. Finally, we examine inflation targeting in the euro area,
where there are many countries but a single currency.

13.2 Inflation and the Fisher Equation

The Fisher equation is a key building block in most models of inflation. It may
be written as

Rt = rt + Et∆pt+1, (13.1)

where Rt is the nominal interest rate, rt is the real interest rate, and pt is the
logarithm of the general price level. In the DGE model the long-run real interest
rate is θ, the rate of time preference. Thus, in the long run, inflation satisfies

∆p = R − θ, (13.2)

where R is the nominal interest rate in the long run, or its long-run average
value. If the monetary authority has discretion over the choice of the nominal
interest rate, then equation (13.2) determines long-run inflation. We note that
there is no role for the supply of money in this.

In the short run, when all three variables vary with time, the Fisher equation
can be rewritten so that it determines the price level as

pt = Etpt+1 + rt − Rt

=
∞∑
s=0

Et(rt+s − Rt+s). (13.3)

The current price level is therefore determined by current and expected future
nominal and real interest rates. If rt is exogenous and Rt is chosen using dis-
cretion, then the money supply is not relevant. More generally, rt is endoge-
nously determined by the economy, which implies that we need to consider a
fuller model. Further, Rt could be determined by an interest rate rule or, under
money-supply targeting, through the money market, or, in an open economy,
through the UIP condition.

Consider the use of an interest rate rule. Suppose that the monetary authority
commits to using the rule

Rt = α0 +α1pt +α2∆pt,

where, under price-level targeting, α2 = 0, and, under inflation targeting, α1 =
0. It follows from the Fisher equation that the price level is determined from

α1pt +α2∆pt − Et∆pt+1 = rt −α0.

The solution under price-level targeting is

pt = 1
1+α1

Etpt+1 + rt −α0

1+α1

=
∞∑
s=0

Etrt+s −α0

(1+α1)s+1
. (13.4)
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The price level is now the discounted value of current and expected future
deviations of real interest rates from α0.

The solution under inflation targeting is

∆pt = 1
α2
Et∆pt+1 + rt −α0

α2

=
∞∑
s=0

Etrt+s −α0

αs+1
2

(13.5)

if α2 � 1. Here it is the inflation rate, not the price level, that is the discounted
value of current and future deviations of real interest rates from α0; moreover,
the price level is no longer determined.

Under the Taylor rule (Taylor 1993),

Rt = R̄ + γ1(∆pt −π∗)+ γ2xt,

where R̄ is the long-run target value of Rt , π∗ is the target rate of inflation, xt
is the output gap (the deviation of output from trend or long-run equilibrium),
γ1 = 1.5, and γ2 = 0.5. The solution is now

∆pt = 1
γ1
Et∆pt+1 + rt − γ2xt − (R̄ − γ1π∗)

γ1

=
∞∑
s=0

Et(rt+s − γ2xt+s)− (R̄ − γ1π∗)
γs+1

1

. (13.6)

Hence inflation is determined by current and expected future values of both
the real interest rate and the output gap. It follows that we may now need a
model of the output gap and the real interest rate.

These results show how different ways of conducting monetary policy affect
inflation (or the price level). The choices about price-level or inflation target-
ing, about discretion or rules, and about the type of rule employed all affect
the solution. They also affect our selection of the economic model required to
analyze monetary policy.

We have previously argued that the main objection to price-level targeting is
that it may entail greater output costs than inflation targeting because a posi-
tive shock to the price level, especially if it is large, may require the price level
and hence output to be reduced, whereas under inflation targeting a temporary
shock to the price level may be ignored if it is expected to have no subse-
quent effect on inflation, i.e., if there are no second-round effects through, for
example, wages. Price-level targeting also makes inflation more volatile. This is
because a shock that raises the price level will temporarily cause inflation, and
when the price level returns to its target level, inflation must fall, causing infla-
tion volatility. Taken together, these arguments suggest that targeting inflation
is probably preferable to targeting the price level.
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13.3 The Keynesian Model of Inflation

13.3.1 Theory

Before considering modern theories of inflation targeting, we examine the deter-
mination and control of inflation based on the Keynesian model. One of the
most important modifications to Keynes’s original macroeconomic framework
was the inclusion of an equation describing how prices adjust. This is known
as the Phillips curve (Phillips 1958). For many years it formed a standard ingre-
dient of the Keynesian model and played an important role in the analysis of
inflation (see, for example, Phelps 1968, 1973). Later it was found that this
model was unable to provide an adequate explanation for inflation (see Lucas
1976a; Gordon 1997). Nonetheless, modern inflation theory is still based on a
modified version of the Phillips curve.

Consider the following stylized Keynesian model of a closed economy. This
consists of the expectations-augmented Phillips curve:

∆wt = −α(ut −unt)+ βEt−1∆pt, α > 0, 1 � β > 0, (13.7)

wherewt is the nominal-wage rate andpt is the price level (both are logarithms),
ut is the unemployment rate, and unt is the natural rate of unemployment (the
rate of unemployment associated with full employment). In the original Phillips
curve there was no inflation term. Later, the expected value of current inflation
based on information available at time t − 1 was added to reflect real-wage
bargaining.

Wage inflation is assumed to be passed on to price inflation through a pricing
equation based solely on labor costs that ignores labor productivity:

∆pt = ∆wt. (13.8)

The difference between the rate of unemployment and the natural rate is related
to the output gap yt −ynt by

ut −unt = −θ(yt −ynt), θ > 0, (13.9)

where yt is the logarithm of output and ynt is full-capacity output. This equa-
tion is known as Okun’s law (Okun 1962). The model is completed by adding
the money-demand function

mt − pt = yt − λRt, λ > 0, (13.10)

where mt is the logarithm of nominal money balances and Rt is the nominal
interest rate, together with the Fisher equation

Rt = rt + Et∆pt+1, (13.11)

which defines the real interest rate, rt . We assume thatmt , rt , unt , and ynt are
exogenous.
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From equations (13.7)–(13.9) inflation is determined by the aggregate supply
function

∆pt = αθ(yt −ynt)+ βEt−1∆pt. (13.12)

It follows that if β < 1 there is both a long-run and a short-run trade-off between
inflation and output. This suggests that, given inflation expectations, the rate of
inflation can be controlled through controlling excess capacity; a lower inflation
rate requires a higher excess capacity.

We note that if β = 1 there is no trade-off. Under rational expectations,

∆pt = Et−1∆pt + εt,
where the innovation εt satisfies Et−1εt = 0. Hence, if β = 1, then equa-
tion (13.12) becomes

yt = ynt + 1
αθ
εt. (13.13)

Consequently, inflation is independent of output, and output differs from full-
capacity output due to εt , the shock or the innovation in inflation, εt .

The aggregate demand function is derived from equations (13.10) and (13.11).
Combining them to eliminate Rt we obtain

yt = λEtpt+1 − (1+ λ)pt +mt + λrt. (13.14)

Equations (13.12) and (13.14) determine pt and yt . Eliminating yt gives the
reduced-form equation for pt :

[1+αθ(1+ λ)]pt −αθλEtpt+1 − βEt−1pt − (1− β)pt−1 = xt, (13.15)

xt = αθ(mt + λrt −ynt). (13.16)

The solution may be obtained using the Whiteman solution procedure described
in the mathematical appendix. If we assume that xt = φ(L)et , where et is an
i. i.d. shock with zero mean, and that the solution takes the form pt = A(L)et ,
then we may rewrite equation (13.15) in terms of the lag operator as

p = {[1+αθ(1+λ)]A(L)−αθλ[A(L)−a0]L−1−β[A(L)−a0]−(1−β)A(L)L}et.
As A(L) = φ(L), we have

A(L) = −(αθλL−1 + β)a0 +φ(L)
[1− β+αθ(1+ λ)]−αθλL−1 − (1− β)L

= (αθλ+ βL)a0 − Lφ(L)
(1− β)f(L) ,

where

f(L) = αθλ
1− β −

1− β+αθ(1+ λ)
1− β L+ L2 = 0.

The characteristic equation f(L) = 0 has two roots. As f(1) = −(αθ/(1−β)) <
0 we have a saddlepath solution. We denote the roots by η1 � 1 and η2 < 1.
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Hence,

f(L) = (L− η1)(L− η2)

= −η1L
(

1− 1
η1
L
)
(1− η2L−1).

Using the method of residues for the unstable root η2, it follows that

lim
L→η2

(1− β)(L− η1)(L− η2)A(L) = −(αθλη−1
2 + β)a0 +φ(η2) = 0

and hence a0 is uniquely determined by

a0 = η2φ(η2)
αθλ+ βη2

.

The solution for pt can therefore be written as

(1− β)η1

(
1− 1

η1
L
)
pt = αθλ+ βL

αθλ+ βη2

[
1− η2L−1φ(η2)φ(L)−1

1− η2L−1
− βL

]
φ(L)et

or, in terms of xt , as

pt = 1
η1
pt−1 + 1

ϕ

∞∑
s=0

ηs2Etxt+s +
β(1−αθλ− βη2)

ϕ
xt−1, (13.17)

where ϕ = (1− β)η1(αθλ+ βη2).
Equation (13.17) shows that the price level has both forward- and backward-

looking components. Increases in the money supply and the real interest rate
and decreases in full-capacity output, whether in the current period or expected
in the future, would cause the current price level to increase, but the adjustment
to a new long-run equilibrium price level takes place over time.

In the long run the solution for the price level is

p =m+ λr −yn
and so long-run inflation is

∆p = ∆m+ λ∆r −∆yn.

Since, over the long run, output and inflation tend to be positive, while in com-
parison the real rate of return is approximately constant, inflation in the Keyne-
sian model requires an accommodating growth in the money supply. Without
this, positive output growth would result in negative inflation. Thus, although
the emphasis in the Keynesian model is on the control of inflation through
demand management (in particular, fiscal policy), an accommodating mone-
tary policy is also required to achieve a stable trade-off between inflation and
output. Without this, inflation cannot be controlled in the long run by fiscal
policy alone.
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13.3.2 Empirical Evidence

The original basis for the Phillips curve was its apparent ability to account for
U.K. wage inflation over the previous hundred years. However, as soon as it was
used as the basis for policy it appeared to break down, thereby losing its ability
to explain inflation. This phenomenon led to a general proposition in economic
policy known as “Goodhart’s law,” which asserts that any economic relation
tends to break down when used for policy purposes. Where once there appeared
to be a trade-off between wage inflation and unemployment (or output) so that
it seemed possible to control inflation by managing output, as soon as this was
tried, the trade-off disappeared and inflation appeared to be unconnected with
output, especially in the long run.

An explanation for Goodhart’s law is that the economic relations being manip-
ulated by policy are not structural; i.e., they are derived from more fundamental
behavioral relations, such as the first-order conditions associated with the opti-
mizing decisions of households and firms. These decision rules are determined
in terms of the deep structural parameters of the problem, whereas the coeffi-
cients of the economic equations being manipulated—like the Phillips curve—
are functions of these deep structural parameters and so may change when
policy changes. This point was first made by Lucas (1976a) and is known as
“the Lucas critique.” Further, optimal decision rules, whether those of private
economic agents or of a policy maker, and especially if they are intertemporal,
are contingent on the state of the economy. If the state of the economy changes,
then again the decision rule may change, and hence the derivative economic
relations. As we have seen previously, this is the basis of time-inconsistent
policy.

Figure 13.1 shows the relation between wage inflation and unemployment in
the United Kingdom. The trade-off between wage inflation and unemployment
appears to be strong between 1980 and 1985 but weaker up to 1993. After this it
disappears, with unemployment falling without any sign of inflation increasing.
Figure 13.2 shows the trade-off between inflation and the output gap between
1955 and 2005 based on quarterly data and figure 13.3 uses annual data for
greater clarity. It is difficult to detect any stable long-run trade-off between
inflation and the output gap in these two figures.

13.4 The New Keynesian Model of Inflation

13.4.1 Theory

Modern monetary economics is based on a dynamic general macroeconomic
model with imperfect competition. Like the Keynesian model, it has two equa-
tions: an inflation or aggregate supply function, and an IS or aggregate demand
function. Due to this resemblance to the Keynesian model, it is usually referred
to as the New Keynesian model (NKM) (see Furher and Moore 1995; Roberts
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Figure 13.3. U.K. inflation–output gap trade-off 1970–2004.

1995, 1997). The specification of the two equations is, however, very different.
As previously noted, particularly in our discussion of imperfect price flexibil-
ity in chapter 9 and of exchange rates in chapter 12, the Keynesian model is
not derived from a microfounded general equilibrium model, even though it is a
model of the whole economy. There is a vast literature on inflation targeting via
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the NKM. For recent surveys see Clarida et al. (1999), Walsh (2003), Woodford
(2003), Bernanke and Woodford (2005), and Gali (2008).

A typical stylized NKM consists of the following two equations:

πt = µ + βEtπt+1 + γxt + eπt, (13.18)

xt = Etxt+1 −α(Rt − Etπt+1 − θ)+ ext, (13.19)

where 0 < β � 1, α,γ, µ, θ > 0, πt is inflation and is measured either by the
CPI or the GDP deflator, xt = yt − ynt is the output gap (measured here as
output less “steady-state” output and not as capacity output less actual out-
put as in chapter 12), yt is GDP, ynt is a measure of trend or of equilibrium
GDP, Rt is the policy instrument—an official nominal interest rate—and eπt and
ext are, respectively, zero mean and serially uncorrelated supply and demand
shocks. Here a positive eπt raises inflation if output is fixed. The inflation equa-
tion (13.18) is a version of the Phillips equation that is sometimes known as
the expectations-augmented or New Keynesian Phillips curve. Equation (13.19)
is called the New Keynesian IS function. We continue to relate the real interest
rate, rt , to the nominal interest rate and to inflation through the Fisher equa-
tion rt = Rt − Etπt+1, but now rt is endogenous, and not exogenous as before.
This turns out to be an important difference. All variables apart from interest
rates are expressed in natural logarithms. Assuming that in equilibrium the rate
of inflation is the target rate π∗, the output gap is zero, and the long-run real
interest rate is r̄ , then µ = (1−β)π∗, the long-run value of it is r̄+π∗ = θ+π∗,
and hence r̄ = θ, where, in general equilibrium, θ is the rate of time preference.

The inflation equation (13.18) is similar to the closed-economy inflation mod-
els derived in chapter 9. Its dynamic specification could be made more general
by adding a term in πt−1, which would slow down the dynamic adjustment
of inflation. This would also accord more with the empirical evidence. Cen-
tral banks typically target a measure of consumer inflation such as the CPI.
For an open economy, further variables may be required in order to capture
the effect on domestic CPI inflation of the price of imports and through this
the impact of world inflation. The New Keynesian IS function requires more
extensive discussion.

13.4.1.1 The New Keynesian IS Function

The New Keynesian IS function provides the link between the real interest rate
and the output gap. Under inflation targeting, the aim is to use the nominal
interest rate to control inflation via its effect on output. Thus the strength of the
links between Rt and xt and between xt and πt are crucial to the effectiveness
of monetary policy. The intuition is that an increase in the official interest rate
raises the real interest rate and hence reduces output and the output gap, which
in turn reduces inflation. The New Keynesian IS function is forward looking.
The theoretical basis for this in a dynamic general equilibrium model of the
economy is the consumption Euler equation. First we consider the problem
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based on the life-cycle model of the representative household. We then use a
full model of the economy.

We have previously represented the household’s problem as maximizing

Et
∞∑
s=0

βsU(ct+s), β = 1
1+ θ , (13.20)

subject to the real budget constraint

at+1 + ct = yt + (1+ rt)at, (13.21)

where yt is exogenous income and at is the stock of assets held at the start
of the period and rt is their real return. (If households have net liabilities, we
write bt = −at .) This gives the Euler equation

Et
[
β
U ′(ct+1)
U ′(ct)

(1+ rt+1)
]
= 1.

Approximating marginal utility by

U ′(ct+1) � U ′(ct)+U ′′∆ct+1,

we obtain the following expression for consumption:

Et∆ ln ct+1 = 1
σ
(Etrt+1 − θ), (13.22)

where σ = −(CtU ′′/U ′) is the coefficient of relative risk aversion. This can be
rewritten as

ln ct = Et ln ct+1 − 1
σ
(Etrt+1 − θ) (13.23)

or, in terms of deviations around the steady state, as

ln ct − ln c̄t = Et(ln ct+1 − ln c̄t+1)− 1
σ
(Etrt+1 − θ), (13.24)

where c̄t is the steady-state value of consumption, which may be time-varying,
and the steady-state value of the real interest rate is θ.

In order to obtain the New Keynesian IS function (13.19) it is necessary to
combine the Euler equation with the household budget constraint. A log-linear
approximation to the budget constraint is

a
y

lnat+1 + cy ln ct = lnyt + (1+ θ) ay lnat + ay rt, (13.25)

where we assume that in steady state the ratios of assets and consumption
to income are constant. Combining equations (13.24) and (13.25) to eliminate
consumption gives

lnyt − lnynt = Et(lnyt+1 − lnyn,t+1)− c
σy

(Etrt+1 − θ)

+ a
y
[(1+ θ)Et∆ lnat+1 − Et∆ lnat+2 + Et∆rt+1]. (13.26)
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Finally, we note that, for a closed economy, total net assets are zero. If we
therefore set a = 0, then equation (13.26) reduces to

lnyt − lnynt = Et(lnyt+1 − lnyn,t+1)− c
σy

(Etrt+1 − θ). (13.27)

Equation (13.27) is the same as (13.19) if we equate household income with the
output of the economy.

More generally, and particularly in an open economy, household net assets
are not necessarily equal to zero, and household income is not equal to total
output. Moreover, it is then inappropriate to focus on the household sector
alone. As a result, we should perhaps regard equation (13.27) as a special case.

A Critique of the NKM. Although we base our subsequent analysis of monetary
policy on this formulation of the New Keynesian IS function, before doing so we
reflect further on its specification and interpretation. Strictly speaking, the Euler
equation describes the future behavior of consumption after having taken into
account the information available at time t. New information at time t causes
both ct and Etct+1 to change. In contrast, the New Keynesian IS function is
interpreted as determining the level of yt (or ct).

The first point to make, therefore, is that equation (13.23) is not the same as
the consumption function as it describes the expected future change in con-
sumption, not the current level of consumption. In order to obtain the con-
sumption function we must combine equation (13.23) with the budget con-
straint, equation (13.21). The consumption function may be obtained using the
following log-linear approximation to the intertemporal budget constraint:

Et
lnat+n
(1+ r)n +

c
a

n−1∑
s=0

Et ln ct+s
(1+ r)s =

y
a

n−1∑
s=0

Et lnyt+s
(1+ r)s +

n−1∑
s=0

Etrt+s
(1+ r)s + (1+ r) lnat.

Taking the limit as n → ∞, assuming that limn→∞(lnat+n/(1 + r)n) = 0 and
that Etrt+s = θ, so that Et ln ct+s = ln ct , gives the consumption function as

ln ct = r
1+ r

y
c

∞∑
s=0

lnyt+s
(1+ r)s +

r
1+ r

a
c

∞∑
s=0

Etrt+s
(1+ r)s + r

a
c

lnat. (13.28)

Hence, log consumption depends on the expected present values of log income
and the interest rate, and on the log asset stock.

The effect on consumption of a temporary or a permanent change in real
interest rates therefore depends on whether households have net assets (at > 0)
or net liabilities (at < 0). If households have net assets, then, due to the extra
interest income, an increase in the real interest rate will increase, not decrease,
consumption as the New Keynesian IS function, equation (13.19), assumes. If, on
the other hand, households hold net liabilities (i.e., bt > 0), then the log-linear
approximation becomes

ln ct = r
1+ r

y
c

∞∑
s=0

lnyt+s
(1+ r)s −

r
1+ r

b
c

∞∑
s=0

Etrt+s
(1+ r)s − r

b
c

lnbt. (13.29)
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Thus it is only if households have net liabilities that an increase in the real
interest rate reduces consumption and hence aggregate demand. For example,
a tightening of current monetary policy by a one-period unit increase in the
current interest rate rt will increase ln ct by (r/(1 + r))(a/c) if households
have net assets, and decrease ln ct by this amount if they have net liabilities,
but Et ln ct+1 would be unchanged in both cases. In other words, if households
have net assets, a temporary tightening of monetary policy would be a stimulus
to the economy, not a depressive as assumed in the New Keynesian inflation-
targeting model. Since at any point in time there will be some households with
net assets and others with net liabilities, the strength of the interest rate effect
on consumption may be quite weak, or even zero for a closed economy, where,
in the aggregate, net financial assets must be zero as one person’s assets are
another’s liabilities.

Further understanding of the different implications of the consumption Euler
equation and the consumption function may be obtained by considering what
happens when the future real interest rate is expected to change. As a result
of a unit increase in Etrt+1 from its initial value of θ, such that real interest
rates in all other periods are assumed unchanged, ct becomes c∗t and Et ln ct+1

becomes Et ln c∗t+1. From the consumption functions for periods t and t+1 with
income fixed, equation (13.29), we then have

Et∆ ln ct+1 = − r
1+ r

a
c
rt + r

1+ r
a
c

(
1− 1

1+ r
)
Etrt+1 + r ac Et∆ lnat+1.

Hence, as a result of the unit increase in Etrt+1, the expected rate of growth of
consumption becomes

Et∆ ln c∗t+1 = Et∆ ln ct+1 + r
1+ r

a
c

(
1− 1

1+ r
)
+ r a

c
Et(lna∗t+1 − lnat+1).

From the Euler equation (2.12),

Et∆ ln ct+1 = 1
σ
(Etrt+1 − θ) = 0.

It follows that

Et(∆ ln c∗t+1 −∆ ln ct+1) = 1
σ
> 0

and

Et(lna∗t+1 − lnat+1) = − 1
σ

r
(1+ r)2 < 0.

An increase in the interest rate has therefore led to an increase in the expected
rate of growth of consumption, but a fall in current consumption and a fall in
asset holding. A corresponding result can be derived when households have net
liabilities. The implication is that, in order to determine the effect on consump-
tion of a change in the real interest rate, either we should use the consumption
function instead of the consumption Euler equation, or we should include the
budget constraint in the model as well as the Euler equation.



�

�

“wickens” — 2007/10/15 — 13:08 — page 368 — #386
�

�

�

�

�

�

368 13. Monetary Policy

Even then there is a further difficulty. Our derivation of the New Keynesian IS
function is based on the decisions of the household, and not on a model of the
full economy. We now rectify this. We assume that in the full closed economy
the problem is to maximize expected discounted utility

Et
∞∑
s=0

βsU(ct+s , lt+s), β = 1
1+ θ ,

subject to

yt = ct + it + gt,
yt = Atkαt n1−α

t ,

∆kt+1 = it − δkt,
nt + lt = 1,

where y is output, c is consumption, l is leisure, n is work, i is investment, k
is capital, g is government expenditure, and A is technical progress.

The solution is

Et∆ ln ct+1 = 1
σ
(Etrt+1 − θ),

Ul,tnt = (1−α)Uc,tyt,
rt+1 = αyt+1

kt+1
− δ.

A log-linear approximation to the resource constraint is

lnyt = c
y

ln ct + ky [lnkt+1 − (1− δ) lnkt]+ gy lngt.

Eliminating ln ct using the Euler equation and noting that r = α(y/k)− δ and
1− (c/y)− (g/y) = δ(k/y) we obtain the IS function:

lnyt = Et lnyt+1 +
(

1− δ k
y
− g
y

)
1
σ
(Etrt+1 − θ)

+ k
y
[Et∆ lnkt+2 − (1− δ)Et∆ lnkt+1]− gy Et∆ lngt+1.

Thus, in the full economy model, output depends on the capital stock and on
government expenditures, and the capital stock depends on output and on the
real interest rate. Since an increase in the real interest rate reduces the capital
stock and hence output, the direct response of output to a change in the real
interest rate, which is positive, may be partly, or fully, offset by the real interest
rate’s negative effect on capital.

The general conclusion to emerge from this discussion is that the New Key-
nesian IS function does not provide a secure theoretical basis for the part of the
monetary transmission mechanism that links interest rates to output. We have
shown that the New Keynesian IS function may give a completely misleading
signal of the effects of monetary policy, even to the extent of giving the wrong
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sign. We have suggested that it is better to carry out the analysis using the
consumption function or to include the budget constraint as an extra equation
in the model. We have also argued that the New Keynesian IS function derived
solely from the behavior of households may be misspecified due to not being
based on a model of the full economy. A more secure way to proceed is, there-
fore, to use the Euler equation together with the economy’s resource constraint.
For further discussion on the theoretical underpinnings of the NKM see Smith
and Wickens (2007). Despite these misgivings, we will continue to use the New
Keynesian IS function found in the literature on inflation targeting.

13.4.2 The Effectiveness of Inflation Targeting in the New Keynesian
Model

We consider the response of inflation and output to a change in interest rates
under both a policy of discretion and commitment to a Taylor rule. The analysis
is based on the New Keynesian model, equations (13.18) and (13.19), which for
convenience we repeat:

πt = µ + βEtπt+1 + γxt + eπt, (13.30)

xt = Etxt+1 −α(Rt − Etπt+1 − θ)+ ext. (13.31)

13.4.2.1 Using Discretion

The monetary instrument is the nominal interest rate Rt , which is chosen at the
discretion of the central bank. Intuitively, an increase in the nominal interest
rate reduces output and hence inflation. However, in the NKM a surprising result
occurs.

Eliminating xt from the model gives the following reduced-form dynamic
equation for πt :

πt − (1+ β+αγ)Etπt+1 + βEtπt+2 = αγθ + zt,
zt = −αγRt + eπt + γext.

⎫⎬
⎭ (13.32)

The long-run solution is
πt = Rt − θ.

To analyze the short-run dynamics we use Whiteman’s solution method.
Equation (13.32) can be written as

{A(L)− (1+ β+αγ)L−1(A(L)− a0)+ βL−2[A(L)− a0 − a1L]}εt = φ(L)εt,
where πt = a+A(L)εt and zt = φ(L)εt . Hence

A(L) = [β− (1+ β+αγ)L]a0 + βLa1 + L2φ(L)
β− (1+ β+αγ)L+ L2

and the characteristic equation is

f(L) = β− (1+ β+αγ)L+ L2 = 0.
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Since f(1) = −αγ < 0 we have a saddlepath solution. We denote the roots by
η1 � 1 and η2 < 1. As there is only one unstable root η2, but two undetermined
coefficients a0 and a1, the solution will not be unique. Using the method of
residues gives

lim
L→η2

(L− η1)(L− η2)A(L) = [β− (1+ β+αγ)η2]a0 + βη2a1 + η2
2φ(η2) = 0.

(13.33)
This shows thata0 anda1 cannot be uniquely determined; we can only eliminate
one as a function of the other.

Noting that

f(L) = (L− η1)(L− η2)

= −η1L
(

1− 1
η1
L
)
(1− η2L−1)

from equation (13.33),(
1− 1

η1
L
)
A(L)

= [(1+ β+αγ)a0 − βa1](L− η2)− L2φ(L)+ η2
2φ(η2)

η1L(1− η2L−1)

= (1+ β+αγ)a0 − βa1

η1
−
[
η2

η1

1− η2L−1φ(η2)φ(L)−1

1− η2L−1
+ 1
η1
L
]
φ(L).

The solution for inflation is therefore

πt = − αγθ
η1(1− η2)

+ 1
η1
πt−1 − η2

η1

∞∑
s=0

ηs2Etzt+s

− 1
η1
zt−1 + (1+ β+αγ)a0 − βa1

η1
εt

= − αγθ
η1(1− η2)

+ 1
η1
πt−1 + αγη2

η1

∞∑
s=0

ηs2EtRt+s +
αγ
η1
Rt−1

+ δ(eπt + γext)+ αγη1
(eπ,t−1 + γex,t−1), (13.34)

where δ is an arbitrary constant, implying that the solution is not unique.
It follows that a discretionary increase in interest rates either in the previous

period, the current period, or in the future is expected to increase, not decrease,
inflation, which is contrary to what the earlier intuition might lead one to expect.
Moreover, the appropriate setting for the interest rate so that it counteracts
current supply and demand shocks is unclear as the effects of the shocks on
inflation are indeterminate. It would seem, therefore, that a policy of discretion,
based on this specification of the NKM, does not provide a satisfactory basis
for inflation targeting.

The solution for the output gap is obtained by rewriting equation (13.19)
using the lag operator and then substituting for Etπt+1 = L−1πt from the
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solution for πt . This can be shown to give

∆xt = 1
η1
∆xt−1 − α

2γη2

η1

∞∑
s=0

ηs2EtRt+s +α(1−
αγ
η1
)Rt−1 − α

η1
Rt−2

−αδ(eπt + γext)− α
2γ
η1
eπ,t−1 −

(
1+ αγ

2

η1

)
ex,t−1 + 1

η1
ex,t−2.

(13.35)

The interest rate therefore affects the change in the output gap, but not its level.
Furthermore, this change persists over time.

13.4.2.2 Rules-Based Policy

It is informative to compare the solutions for inflation and the effectiveness
of monetary policy under a policy of discretion and one of commitment to a
Taylor rule. We now write the Taylor rule as

Rt = θ +π∗ + µ(πt −π∗)+ υxt + eRt (13.36)

with µ = 1.5 and ν = 0.5. The random variable eRt is introduced to allow for
unexpected departures from the rule. Solving the NKM together with the Taylor
rule results in both xt and Rt being eliminated and gives

πt − [1+ β(1+αυ)+αγ]Etπt+1 + βEtπt+2 = zt,
zt = απ∗[ν(1− β)+ γ(µ − 1)]+ (1+αυ)eπt + γext −αγeRt.

⎫⎬
⎭ (13.37)

Equation (13.37) can be written as

{[1+α(υ+ µγ)]A(L)− [1+ β(1+αυ)+αγ]L−1[A(L)− a0]

+ βL−2[A(L)− a0 − a1L]}εt = φ(L)εt,
where πt = a+A(L)εt and zt = φ(L)εt . Hence

A(L) = [β− (1+ β(1+αυ)+αγ)L]a0 + βLa1 + L2φ(L)
β− [1+ β(1+αυ)+αγ]L+ [1+α(υ+ µγ)]L2

and the characteristic equation is

f(L) = β− [1+ β(1+αυ)+αγ]L+ [1+α(υ+ µγ)]L2 = 0.

As f(1) = α[ν(1− β)+ γ(µ − 1)] > 0 both roots are either stable or unstable.
As 1 > β/(1+ α(υ+ µγ)) > 0, the roots must be less than unity and positive.
Hence they are unstable. We denote the roots by 0 < η1, η2 < 1.

Using the method of residues gives, for i = 1,2,

lim
L→ηi

f (L)A(L) = lim
L→ηi

[1+α(υ+ µγ)](L− η1)(L− η2)A(L)

= [β− (1+ β(1+αυ)+αγ)ηi]a0 + βηia1 + η2
i φ(ηi)

= 0.
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This gives two equations in the two unknowns a0 and a1. Hence a0 and a1 are
uniquely determined.

The solution for πt can therefore be obtained directly from equation (13.37)
as

πt = 1
[1+α(υ+ µγ)]L−2(L− η1)(L− η2)

zt

= 1
[1+α(υ+ µγ)](1− η1L−1)(1− η2L−1)

zt

= 1
[1+α(υ+ µγ)](η1 − η2)

[
η1

1− η1L−1
− η2

1− η2L−1

]
zt

= 1
1+α(υ+ µγ)

[
η1

η1 − η2

∞∑
s=0

ηs1Etzt+s −
η2

η1 − η2

∞∑
s=0

ηs2Etzt+s
]

= π∗ + 1
1+α(υ+ µγ)[(1+αυ)eπt + γext −αγeRt]. (13.38)

Thus the average inflation rate equals the target rate π∗. Inflation deviates
from target due to the three shocks. Positive inflation and output shocks cause
inflation to rise above target, but positive interest rate shocks cause inflation
to fall below target. We note that a forward-looking Taylor rule in which Etπt+1

replaces πt and Etxt+1 replaces xt gives a similar result.
It is possible to choose the parameters of the Taylor rule µ and ν in an optimal

way. For example, we could choose µ and ν to minimize the variance of inflation.
From equation (13.38), and assuming that the shocks are uncorrelated,

vart(πt) = 1
[1+α(υ+ µγ)]2 [(1+αυ)

2σ 2
π + γ2σ 2

x − (αγ)2σ 2
R],

where theσ 2
i (i = π,x,R) are the variances of the shocks. As µ →∞ the variance

of inflation goes to zero; and, for any finite value of µ, as ν → 0 the variance
of inflation decreases. This suggests that if the policy objective is to minimize
the variation of inflation about the target level π∗—which is equivalent to min-
imizing the variance of inflation as Eπt = π∗—then strict inflation targeting
(ν = 0) is preferable to flexible inflation targeting (ν > 0).

The solution for the output gap is obtained from equation (13.19) by sub-
stituting for πt from equation (13.38), for Rt from equation (13.36), and for
Etπt+1 = π∗. Consequently,

xt = Etxt+1 −α(Rt −π∗ − θ)+ ext
= Etxt+1 −αµ(πt −π∗)−αµυxt + ext −αeRt
= Etxt+1 − αµ

1+α(υ+ µγ)[(1+αυ)eπt + γext −αγeRt]
−αµυxt + ext −αeRt

= 1
1+αµυEtxt+1 − 1

1+α(υ+ µγ)(αµeπt + ext − eRt). (13.39)
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Solving equation (13.39) forwards gives the solution for xt as

xt = − 1
1+α(υ+ µγ)(αµeπt + ext − eRt). (13.40)

Hence the expected output gap is zero.
To summarize, inflation targeting based on the New Keynesian model and a

policy of discretion results in an increase in the interest rate causing inflation to
rise, but does not uniquely determine inflation. In contrast, under commitment
to a rule, average inflation is equal to its target value. Moreover, by fine-tuning
the parameters of the Taylor rule, it is possible to minimize the fluctuations of
inflation about target. We return to this point later. Under discretion, interest
rates affect the change in the output gap and this change is persistent, but,
under commitment, on average the output gap is zero and deviations of the
output gap from zero are not persistent.

13.4.3 Inflation Targeting with a Flexible Exchange Rate

Having a flexible exchange rate provides an additional channel to the real inter-
est rate in the transmission mechanism of interest rates to inflation, which
makes monetary policy more powerful than relying on the real interest rate
(cost of capital) channel alone. This is because, given UIP, an increase in inter-
est rates causes an exchange-rate appreciation, which worsens the trade balance
and hence reduces domestic demand. We illustrate this using the following
modified New Keynesian model:

πt = (1− β)π∗ + βEtπt+1 + γxt + eπt, (13.41)

xt = −α(Rt − Etπt+1 − θ)+ δ(st + p∗t − pt)+ ext, (13.42)

Rt = R∗t + Et∆st+1, (13.43)

where all coefficients are nonnegative. Note that although π∗ denotes target
inflation,R∗t and P∗t denote the foreign interest rate and price level, respectively.
The main changes from the previous New Keynesian model are the omission of
the forward-looking term in Etxt+1 from the aggregate demand equation and
the inclusion of the real exchange rate and the UIP condition, which is an extra
equation. The reason for omitting Etxt+1 is to simplify the dynamics.

13.4.3.1 Using Discretion

If we assume that the central bank sets Rt through a policy of discretion, then,
using the lag operator, it can be shown that the resulting reduced-form equation
for the price level can be written as

[1+ β+ γ(α+ δ)− L− (β+αγ)L−1]pt = zt,

zt = −γ
(
α+ δ−αL−1

1− L−1

)
Rt + γδp∗t + eπt + γext.
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The characteristic equation

f(L) = β+αγ + [1+ β+ γ(α+ δ)]L+ L2 = 0

satisfies f(1) = −γδ < 0 and so has a saddlepath solution. We denote the roots
by η1 � 1 and η2 < 1. The solution for the price level can be written as

pt = 1
η1
pt−1 − γ

η1(1− η2)

∞∑
i=0

{δ+ [α(1− η2)+ δη2]η2
2}EtRt+i

+ γδ
η1

∞∑
i=0

η2
2Etp

∗
t+i +

1
η1
(eπt + γext). (13.44)

Equation (13.44) shows that domestic inflation is driven by foreign inflation,
but this may be offset by discretionary changes in the domestic interest rate as
an increase in Rt reduces the domestic price level. The equation also shows that
the larger is δ (i.e., the effect of the real exchange rate on domestic output), the
stronger is the exchange-rate channel. Consequently, having a floating exchange
rate makes monetary policy more effective.

We may compare this result with our earlier result on the effectiveness of
inflation targeting where we found that an increase in the interest rate raised,
instead of reduced, inflation. The reason for this difference is that the out-
put equation (13.19) previously included the term Etxt+1, whereas in equa-
tion (13.42) we have omitted it. And the reason why the solution in equa-
tion (13.44) is for the price level rather than the inflation rate is because we
have included the real exchange rate in equation (13.42).

13.4.3.2 Rules-Based Policy

We assume now that the central bank commits to setting interest rates using
the Taylor rule, equation (13.36). As a result, Rt is also an endogenous variable,
together with pt , xt , and st .

The model may be written using the lag operator as

A(L)

⎡
⎢⎢⎢⎢⎣
pt
xt
st
Rt

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
(1− β)π∗ + eπt
αθ + δp∗t + ext

R∗t
θ + (1− µ)π∗ + eRt

⎤
⎥⎥⎥⎥⎦ ,

where

A(L) =

⎡
⎢⎢⎢⎢⎣

1+ β− L− βL−1 −γ 0 0

α+ δ−αL−1 1 −δ α
0 0 L−1 − 1 −1

−µ −ν 0 1

⎤
⎥⎥⎥⎥⎦ .

The characteristic equation is

|A(L)| = 0.
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It can be shown that

|A(L)| = [1+ ν(α+ δ)]L−2f(L),
f (L) = (L− η1)(L− η2)(L− η3),

where η1 � 1 and η2, η3 < 1. Thus there is one stable root and two unstable
roots. It then follows that the solution is⎡

⎢⎢⎢⎢⎣
pt
xt
st
Rt

⎤
⎥⎥⎥⎥⎦ =

1
|A(L)| adj[A(L)]

⎡
⎢⎢⎢⎢⎣
(1− β)π∗ + eπt
αθ + δp∗t + ext

R∗t
θ + (1− µ)π∗ + eRt

⎤
⎥⎥⎥⎥⎦ ,

where adj[A(L)] is the adjoint matrix of A(L). The solution for the price level
has the general form

pt = 1
η1
pt−1 +

∞∑
k=0

ηk
2(ϕ2Etp∗t+k +ϕ3EtR∗t+k)

+
∞∑
k=0

ηk
3(ϕ4Etp∗t+k +ϕ5EtR∗t+k)+ϕπeπt +ϕxext +ϕReRt,

whereϕπ ,ϕx , andϕR are all positive. Consequently, like a policy of discretion,
domestic inflation is determined by foreign inflation, but, unlike discretion, fol-
lowing a Taylor rule does not necessarily eliminate the effect of foreign inflation,
nor does it deal with the additional presence of the foreign interest rate. This
suggests that for the model defined by equations (13.41), (13.42), and (13.43) a
policy of discretion may be preferable to one of commitment to a Taylor rule.
Intuitively, the obvious way to improve the outcome for domestic inflation is
to modify the Taylor rule by including in it additional variables such as foreign
inflation and the foreign interest rate.

Taken together, these results on inflation targeting based on the NKM reveal
their sensitivity to different specifications of the model and to the choice of
discretion versus rules. For further discussion of monetary policy in an open
economy see Clarida et al. (2001).

13.5 Optimal Inflation Targeting

So far we have examined the effect on inflation of changing the interest rate, but
without having any particular objective in mind. The aim of optimal inflation
targeting is to set interest rates to minimize a given objective function sub-
ject to the constraints provided by the structure of the economy. The central
bank could choose its own objective function or it could try to maximize social
welfare. A common assumption is that the central bank seeks to minimize the
intertemporal quadratic objective function

Et
∞∑
s=0

βs[(πt+s −π∗)2 +α(yt −y∗t )2], (13.45)
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where π∗ is the target level of inflation, yt is output, and y∗t is the target
level of output—typically full-capacity or equilibrium output. Thus the aim is
to minimize the present value of deviations of inflation and output from their
target levels; α is the weight attached to the output objective relative to that
for the inflation objective. The constraint is a model of the determination of
inflation and output such as the New Keynesian model.

13.5.1 Social Welfare and the Inflation Objective Function

Originally, the choice of equation (13.45) as the objective function was purely
ad hoc, though intuitively reasonable. In particular, it was not based explicitly
on considerations of social welfare. The relation between social welfare and a
quadratic loss function like equation (13.45) has been analyzed by Rotemberg
and Woodford (1998) and Woodford (2003, chapter 6). They show that intertem-
poral social welfare can be approximated by equation (13.45). This is the basis
of our discussion. The difference is that we use a set-up related to our previous
discussion which is similar to a closed-economy version of the Obstfeld–Rogoff
redux model.

We have previously defined social welfare in terms of the representative
household intertemporal utility function, which depends on real variables such
as consumption, real-money balances, and leisure. In contrast, equation (13.45)
has a nominal as well as a real component. In reconciling the two objective
functions we need to show how a nominal objective is consistent with seeking
to maximize a social welfare function based only on real variables. The answer
lies in the real costs imposed through prices being slow to adjust and not being
perfectly flexible.

Suppose that the social welfare function for the representative household in
period t is

Ut = ln ct − γ lnyt(z), (13.46)

where ct is an index of total household consumption given by the CES function

ct =
[∫ 1

0
ct(z)(σ−1)/σ

]σ/(σ−1)
, σ > 1, (13.47)

and the last term reflects utility from leisure. which is inversely related to the
work required to produce yt(z) of good z. Let Pt be a general price index given
by

Pt =
[∫ 1

0
pt(z)1−σ

]1/(1−σ)
. (13.48)

The budget constraint for the representative household is

Ptct = pt(z)yt(z).
It follows from the results in chapters 8 and 12 that the demand for good z is

ct(z) =
[
pt(z)
Pt

]−σ
ct.
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As ct(z) = yt(z) and ct = yt ,

yt(z) =
[
pt(z)
Pt

]−σ
yt. (13.49)

Next consider a second-order approximation to the utility function taken
about the steady-state values of ct andyt(z), which we denote by c∗t andy∗t (z).
This gives

EtUt � ln c∗t − γ lny∗t (z)− 1
2Et

[ct − c∗t
c∗t

]2

− 1
2γEt

[yt(z)−y∗t (z)
y∗t (z)

]2

= U∗t − 1
2Vt(ln ct)− 1

2γVt[lnyt(z)]

= U∗t − 1
2Vt(lnyt)− 1

2γVt[lnyt(z)],

where Vt(lnyt) can be interpreted as the variance of total output about the
steady state or, approximately, by the squared deviation about the steady state:

Vt(lnyt) � Et(yt −y∗t )2.
Vt[lnyt(z)] can be interpreted as the variance of output across households/
firms from the steady state. Thus dispersion of output across firms is assumed
to cause a real welfare loss.

From equation (13.49),

lnyt(z) = −σ(lnpt(z)− lnPt)+ lnyt,

where we interpret lnyt as the expected value of lnyt(z) in the steady state and
lnPt as the expected value of lnpt(z) in the steady state. We can then interpret
lnyt(z)−lnyt and lnpt(z)−lnPt as deviations from the expected steady state.
Hence,

Vt[lnyt(z)] = σ 2Vt[lnpt(z)],

implying that the variance of output across firms is caused by the variance of
their prices. It is, therefore, variations in prices across firms from their steady-
state values that causes a loss of real welfare.

At this point we take account of price stickiness by invoking the Calvo model
assumption (discussed in chapter 9) that at any point in time only a proportion
of firms are able to adjust prices fully and the rest keep their prices fixed or
adjust them using a rule of thumb. Distinguishing between the steady-state
price level, which is common to all firms, and the average price level across
firms, if all prices were fully flexible, then the variance of prices across firms
would just be the squared deviation of the average price level from its steady-
state value. The reason that Vt[lnpt(z)] differs from this is price stickiness.

Reinterpreting the Calvo model using the notation here, a proportion ρ of
firms are assumed to adjust their price to the optimal level in period t. The rest
do not adjust at all. The general price level is a weighted average of the two.
Thus

lnPt = ρ lnP#
t + (1− ρ) lnpt−1(z),
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where lnP#
t is the optimal price. Hence, as a proportion 1 − ρ of firms do not

change price,

lnpt(z)− lnPt = ρ(lnpt(z)− lnP#
t )+ (1− ρ)∆ lnpt(z)

= ρ(lnpt(z)− lnP#
t ). (13.50)

Recalling that the aim in the Calvo model is to choose lnpt(z) to minimize

1
2

∞∑
s=0

δsEt[lnpt(z)− lnP#
t+s]

2,

where δ = β(1− ρ), we obtain the solution

lnpt(z) = (1− δ) lnP#
t + δEt lnpt+1(z).

Hence

lnpt(z)− lnP#
t = δ[Et lnpt+1(z)− lnP#

t ]

= δ
1− δEt∆ lnpt+1(z). (13.51)

Consequently, from equations (13.50) and (13.51),

lnpt(z)− lnPt = ρ δ
1− δEt∆ lnpt+1(z).

Accordingly,

Vt[lnpt(z)] =
(
ρδ

1− δ
)2

[Etπt+1(z)−π]2, (13.52)

where πt(z) = ∆ lnpt(z) and π is the average value of Etπt+1(z).
Putting these results together, and noting that all firms who change prices do

so by the same amount, which implies thatπt+1(z) = πt+1, we can approximate
the social welfare function by

EtUt � U∗t − 1
2Vt(lnyt)− 1

2γ
(
σρδ
1− δ

)2

[Etπt+1(z)−π]2

� U∗t − 1
2Et(yt −y∗t )2 − 1

2α[Etπt+1 −π]2. (13.53)

Equation (13.53) is a reassuring result. It suggests that equation (13.45) can be
regarded as an approximation to the intertemporal utility function based on a
utility function defined by equation (13.46). The closeness of the approximation
is, of course, dependent on the validity of the many assumptions that we have
made.

13.5.2 Optimal Inflation Policy under Discretion

13.5.2.1 The Barro–Gordon Model

The seminal paper on optimal inflation targeting is that of Barro and Gordon
(1983). This will form the basis of our analysis. For the sake of simplicity, Barro
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and Gordon use a highly stylized model of the economy. They also use a policy
objective function that is slightly different from equation (13.45).

We assume that the economy faces a trade-off between inflation and output
in the short run but not in the long run. The connection between the two is given
by the following stylized version of the Phillips equation, which is rewritten as
a supply function:

y = yn +α(π −πe)+ ε, (13.54)

where yn is capacity or equilibrium output, πe is the economy’s rational expec-
tation of inflation, and ε is an output shock. An important, but arguably some-
what implausible, assumption is that the output shock is observed by the mon-
etary authority—which we take to be the central bank—but not by the public.
This gives an informational advantage to the central bank.

The monetary-policy instrument is denoted by z. At present we assume that
this is chosen using discretion rather than a rule. z could be the official interest
rate, R, or the rate of growth of the money supply, ∆m. A simplifying assump-
tion is that the effect of z on the inflation rate is stochastic and can be captured
by the stylized transmission mechanism

π = z + v, (13.55)

where v is a shock not observable by the central bank that has a zero mean,
E(v) = 0. Consequently, z controlsπ imperfectly. Another simplifying assump-
tion is that the transmission mechanism is instantaneous and involves no lags.
It follows that the rational expectation of inflation is

Eπ = πe = z. (13.56)

Barro and Gordon specify the central bank’s objective function as

U = λ(y −yn)− 1
2(π −π∗)2, (13.57)

where π∗ is the target rate of inflation, rather than as a quadratic objective
function. As the model of the economy involves no lags, the objective function
can be formulated for a single period. The solution is the same as using an
intertemporal utility function. The implication of equation (13.57) is that the
central bank prefers output to be above its natural level (i.e., y > yn) but
dislikes inflation deviating from target, whether above or below target (i.e., π ≠
π∗). Thus, while the inflation objective is symmetric, the output objective is
not. One justification for the output target asymmetry is that governments do
not dislike output above target because they fear that the central bank might
have a tendency to conservatism, i.e., they might have a preference for keeping
output below its equilibrium level.

The central bank’s problem is to choose z to maximize U subject to the con-
straints provided by the economy, namely, equations (13.54) and (13.55). We
recall that ε is known to the central bank but that v is not, and that yn, πe, π∗

are given.



�

�

“wickens” — 2007/10/15 — 13:08 — page 380 — #398
�

�

�

�

�

�

380 13. Monetary Policy

Eliminating y −yn using the supply function, equation (13.54), and π using
the transmission mechanism, equation (13.55), gives

U = λ[α(π −πe)+ ε]− 1
2(π −π∗)2

= λ[α(z + v −πe)+ ε]− 1
2(z + v −π∗)2.

The first-order condition is

∂U
∂z

= αλ− (z + v −π∗) = 0.

Hence the solution for the policy instrument z is

z = αλ+π∗ − v.
As the central bank does not know v , it uses its best guess, namely that

E(v) = 0. The optimal setting of z is therefore

z∗ = αλ+π∗.
Actual inflation is then

π = αλ+π∗ + v
and so the public’s rational expectation of inflation is

πe = Eπ = αλ+π∗ > π∗. (13.58)

Equation (13.58) is the key result. It shows that expected inflation is greater
than target inflation. In other words, there is an inflation bias. Why is this?
Because the central bank likes y to be greater than yn. Consequently, if λ = 0
then the inflation bias is zero.

Does the extra inflation that results from the central bank’s concern for out-
put confer any benefit on the economy in terms of extra actual output, i.e., is
y > yn? From the supply function, equation (13.54),

y = yn +α(π −πe)+ ε
= yn +α(αλ+π∗ + v −πe)+ ε
= yn +αv + ε.

Hence Ey = yn, implying that no output gain is to be expected as a result of
the central bank preferring output to exceed its equilibrium level. Moreover,
there is no output benefit to the public arising from having excessive inflation.
If the central bank sets λ = 0 in the objective function and, as a result, acts like
a strict rather than a flexible inflation targeter, inflation would be lower and
expected output would be unaffected.

Although the extra inflation does not generate additional output, does it
improve expected utility? This can be evaluated from

U = λ(y −yn)− 1
2(π −π∗)2

= λ(αv + ε)− 1
2(αλ+ v)2.



�

�

“wickens” — 2007/10/15 — 13:08 — page 381 — #399
�

�

�

�

�

�

13.5. Optimal Inflation Targeting 381

Expected utility is therefore

E(U) = −1
2[(αλ)

2 + σ 2
v],

where σ 2
v is the variance of v . The value of λ that maximizes E(U) is λ = 0.

Hence, there is no benefit, i.e., expected gain in utility, arising from the central
bank’s concern about output. In fact, there is an expected utility loss that is
eliminated when λ = 0. We conclude, therefore, that it is optimal for a central
bank pursuing a policy of discretion to be a strict inflation targeter, i.e., to
eschew any output objectives.

13.5.2.2 Using a Quadratic Loss Function

A question that arises is whether this strong conclusion is due to the choice
of objective function. To answer this we reexamine the problem using a single-
period quadratic objective function Q where

Q = 1
2λ(y −yn − k)2 + 1

2(π −π∗)2
= 1

2λ[α(π −πe)+ ε − k]2 + 1
2(π −π∗)2

= 1
2λ[α(z + v −πe)+ ε − k]2 + 1

2(z + v −π∗)2. (13.59)

The reason for including k is so that the central bank still prefers y > yn.
The problem is to choose z to minimize Q. The first-order condition is

∂Q
∂z

= αλ[α(z + v −πe)+ ε − k]+ (z + v −π∗) = 0;

hence the solution for z is

z = α
2λπe +π∗ +αλ(k− ε)

1+α2λ
− v.

Setting E(v) = 0 gives the optimal z as

z∗ = α
2λπe +π∗ +αλ(k− ε)

1+α2λ
.

As a result, inflation is

π = z∗ + v
and so expected inflation is

πe = Eπ = E(z∗ + v)

= α
2λπe +π∗ +αλk

1+α2λ
= π∗ +αλk > π∗. (13.60)

Once again, therefore, there is an inflation bias. This disappears if either λ = 0
or k = 0, i.e., if either the central bank is a strict inflation targeter or if it discards
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its preference for having y > yn. Is there an output gain to justify the inflation
bias? Using the result that πe = π∗ +αλk, the optimal setting for z is

z∗ = α
2λπe +π∗ +αλ(k− ε)

1+α2λ

= πe − αλε
1+α2λ

.

Hence, the actual values of inflation and output are

π = πe − αλε
1+α2λ

+ v,

y = yn +α
(
v − αλε

1+α2λ

)
.

This implies that the expected level of output is

E(y) = yn.
Thus, setting λ, k > 0 is not expected to lead to any output gain.

Is there a welfare benefit from the inflation bias? Substituting the solutions
for inflation and output into the quadratic objective function gives

Q = 1
2λ(y −yn − k)2 + 1

2(π −π∗)2

= 1
2λ
[
α
(
v − αλε

1+α2λ

)
− k

]2

+ 1
2

(
v − αλε

1+α2λ
+αλk

)2

.

Hence expected welfare is

E(Q) = 1
2λ
[
α2σ 2

v +
(
α2λ

1+α2λ

)2

σ 2
ε + k2

]
+ 1

2

(
σ 2
v +

(
αλ

1+α2λ

)2

σ 2
ε + (αλ)2k2

)
.

To minimize E(Q) we must set λ = 0, i.e., give no weight to output. Conse-
quently, as in the Barro–Gordon model, there is neither an output nor a welfare
gain from having λ > 0. A strict ranking of expected welfare costs is possible
as

E(Q) > E(Q)|λ>0, k=0 > E(Q)|λ=0, k>0 = E(Q)|λ=0, k=0.

Thus, welfare costs are minimized solely by setting λ = 0; the choice of k is
immaterial. Nonetheless, a central bank following a policy of discretion might
as well be a strict inflation targeter as there is no advantage to having λ > 0.
The choice of objective function does not affect this conclusion.

13.5.3 Optimal Inflation Policy under Commitment to a Rule

Instead of allowing the monetary authority to have complete discretion in their
choice of z as above, we now consider the case where the central bank publicly
commits itself to following the rule

z = z∗ = π∗,
where the rule is known to the public. As z is chosen through a rule, the central
bank does not need to refer to its objective function.
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It follows that

π = z + v = π∗ + v,
Eπ = πe = π∗,
y = yn +α(π −π∗)+ ε
= yn +αv + ε,

Ey = yn.
We now find that there is no inflation bias and that expected output is the same
as under a policy of discretion.

The welfare implications of commitment can be derived by evaluating the
Barro–Gordon and the quadratic loss functions, equations (13.57) and (13.59).
We can then compare these with their values under discretion.

13.5.3.1 The Barro–Gordon Model

We denote the value of U under commitment by UC. From equation (13.57),

UC = λ(αv + ε)− 1
2v

2,

E(UC) = −1
2σ

2
v .

By comparison, under discretion, expected welfare is

E(UD) = −1
2(α

2λ2 + σ 2
v) < E(UC).

Thus, expected welfare is higher under commitment than discretion. It appears,
therefore, that allowing the central bank to exercise discretion is costly to
society.

13.5.3.2 Quadratic Loss

Similarly, from equation (13.59), actual and expected losses under commitment
are

QC = 1
2λ(αV + ε − k)2 + 1

2V
2,

E(QC) = 1
2(1+α2λ)σ 2

V + 1
2λ(σ

2
ε + k2).

Expected loss under discretion is

E(QD) = E(QC)+ 1
2λ
(

1− α2

1+α2λ

)
σ 2
ε .

It follows that if λ > 1− (1/α2) > 0, then

E(QD) > E(QC).

In other words, a policy of commitment gives a lower expected loss than one
of discretion. We recall that when λ = 0 cost is minimized under discretion. In
addition, E(QD) = E(QC).
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We conclude that the public would prefer a rules-based policy to one of dis-
cretion in which the central bank is a strict inflation targeter. Although a policy
of commitment is preferred by the public, if it is not also preferred by the cen-
tral bank, then the temptation for the central bank is to abandon the rule and
use discretion instead. If the public knows what the rule is, they would know
that it had been broken. Having once reneged on their commitment, the public
would be unlikely to believe any future promises by the central bank to commit
to using a rule. The public would then act on the assumption that the central
bank is using discretion even if it says it is not. In other words, once the central
bank loses its reputation, it would be very difficult to restore it. We examine
these issues further by considering intertemporal optimization. In practice, of
course, matters will not be so clear-cut due to probable public ignorance of
the correct economic structure and, even if this were known, to the impact of
unpredictable shocks.

13.5.4 Intertemporal Optimization and Time-Consistent Inflation
Targeting

As noted in our discussion of fiscal policy in chapter 6, a situation where a policy
maker announces one policy for a given point in time but switches to a different
policy when that time comes is called time inconsistency. We now carry out a
more formal analysis of this problem as it applies to inflation targeting in the
Barro–Gordon model under discretion and commitment.

We assume that prior to period t the central bank commits to using a rule
and hence sets z = π∗. As a result, the public’s expectation of inflation is
πe = π∗. However, the central bank prefers to use discretionary policy and so
in period t decides to switch to this without warning the public of the change.
In particular, we assume that from period t the central bank sets z to minimize
the intertemporal objective function

Ut = Et
∞∑
0

βsUt+s , 0 < β < 1,

subject to

Ut = λ(yt −yn)− 1
2(πt −π∗)2,

yt = yn +α(πt −πet )+ εt,
πt = zt + vt.

As a result, the central bank switches to zt = αλ+π∗ − vt .
Once the central bank is perceived to have switched its policy to discretion,

the public believes this will continue and so revises its expectation of inflation
to Etπt+s = πet+s = π∗ +αλ for s > 0. Thus

πet+s = zt+s =
⎧⎨
⎩π

∗ if πt = π∗,
π∗ +αλ if πt ≠ π∗,

s > 0.
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We now compare the value of the intertemporal objective function when the
central bank does not switch policy with that when it does.

13.5.4.1 No Switch (NS)

If z = π∗ in each period, then

πt = π∗ + v,
πet = π∗,
yt = yn + εt,
UNS
t = λεt − 1

2v
2
t ,

E(UNS
t ) = 1

2σ
2
v .

Hence the expected value of welfare as evaluated using the central banks’s
welfare function is

EUNS
t =

1
2σ

2
v

1− β.

Only unavoidable shocks vt in the transmission mechanism cause a loss of
welfare.

13.5.4.2 Switching (S)

We assume that a switch to discretion occurs in period t but that this is not
apparent to the public until after they have formed their inflation expectations
for period t. Thus, although

πt = π∗ +αλ+ vt,
as the public were not expecting the switch, their expectation of inflation is π∗.
As a consequence of the switch, output in period t is

yt = yn +α(π∗ +αλ+ vt −π∗)+ εt
= yn +α2λ+αvt + εt,

Eyt = yn +α2λ.

Thus there is an output gain due to switching. The welfare implications for
period t are

US
t = λ(α2λ+αvt + εt)− 1

2(αλ+ vt)2,
E(US

t ) = 1
2(αλ)

2 − 1
2σ

2
v > E(U

NS
t ) = −1

2σ
2
v .

Through causing higher output in period t, there is, therefore, also a welfare
gain to the central bank.

This is only temporary as the public’s expectations will change when they
realize that a switch has occurred. Having observed the switch of policy in
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period t, the public then assumes that discretion will be employed in the future.
Consequently, for s > 1,

E(US
t+s) = −1

2[(αλ)
2 + σ 2

v] < E(U
NS
t+s) = −1

2σ
2
v .

It follows that

E(US
t ) = 1

2(αλ)
2 − 1

2σ
2
v −

∞∑
s=1

βs[1
2(αλ)

2 + 1
2σ

2
v]

= (αλ)2 − 1
2

(αλ)2 + σ 2
v

1− β
= E(UNS

t )+ (αλ)2
[

1− 1
2(1− β)

]

� E(UNS
t ) as 1 > β � 1

2 .

The greater the discount factor β, the greater the intertemporal loss of welfare
caused by switching. It is only when the future is heavily discounted (β < 1

2 ) that
the output gain, which occurs only in period t, is sufficient to cause an increase
in intertemporal welfare. In the longer run, welfare is lower in each period.
Moreover, both the central bank and the public are worse off. This suggests
that although switching policy produces immediate gains, it is not a welfare-
improving strategy in the long run. In practice, the public may find it difficult to
identify whether the central bank has switched policy, or whether both inflation
and z have been affected by the shock v .

13.5.5 Central Bank versus Public Preferences

So far we have taken account only of the preferences of the central bank. Sup-
pose that these are different from those of the public. In particular, suppose
that the central bank gives more weight to achieving the inflation objective than
does the public, or the central bank has a lower target level of inflation π∗ than
the public. In other words, the central bank is more conservative about inflation
than the public.

To illustrate, we assume that the welfare function of the central bank is

UCB = λ(y −yn)− 1
2(1+ δ)(π −π∗)2 (13.61)

with δ > 0, but the public prefers δ = 0. Thus the central bank gives more
weight to the inflation objective than the public. Equation (13.61) can be
rewritten as

UCB = (1+ δ)
{
λ

1+ δ(y −yn)−
1
2(π −π∗)2

}
.

Thus, in effect, we have simply replaced λ in the original formulation by λ/(1+
δ). We can therefore just reinterpret the previous results.

It follows that the optimal setting for policy is

z∗ = αλ
1+ δ +π

∗ = πe
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and inflation is

π = αλ
1+ δ +π

∗ + v,

πe = αλ
1+ δ +π

∗.

Consequently, the effect of introducing δ, which is positive, is to reduce both z
and the inflation bias. Output is

y = yn +α
[
αλ

1+ δ +π
∗ + v −πe

]
+ ε

= yn +αv + ε,
which implies that, as before, Ey = yn.

The measure of welfare will depend on whose welfare function is being used.
The central bank’s level of welfare is

UCB = λ(αv + ε)− 1
2(1+ δ)

(
αλ

1+ δ + v
)2

,

E(UCB) = −1
2

[
(αλ)2

1+ δ + (1+ δ)σ
2
v

]
,

while the public’s is

E(UP) = E(UCB)|δ=0

= −1
2[(αλ)

2 + σ 2
v].

As the public’s welfare is independent of the value of δ, it obtains no benefit
from having a central bank more antipathetic to inflation than itself.

In contrast, the welfare cost of the central bank is affected by the size of δ.
The optimal value of δ is obtained from

∂EUCB

∂δ
= 1

2

[(
αλ

1+ δ
)2

− σ 2
v

]
= 0.

The optimal value of δ is therefore

δ = αλ
σv

− 1.

Thus, the greater σv is and the smaller α is, the smaller δ should be. The cost
of shocks in the transmission mechanism are increased by having a large δ.

These results were derived under the assumption that the central bank is
using discretion. Do they hold under commitment, i.e., when the central bank
commits itself to setting z = π∗? In this case there is no inflation bias and no
expected output gain. Further,

E(UCB) = −1
2(1+ δ)σ 2

v ,

E(UP) = −1
2σ

2
v ,
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implying, once more, that there is no gain to the public from having a more
conservative central bank.

The expected welfare of the public and the central bank can be compared
under commitment to a rule and discretion. For the public we get the same
result as before that commitment is preferable as

E(UP)|C = E(UP)|D + 1
2(αλ)

2 > E(UP)|D.

Commitment is also better for the central bank, as

E(UCB)|C = E(UCB)|D + 1
2
(αλ)2

1+ δ > E(U
CB)|D.

There is, therefore, no reason to alter our previous conclusion that, as far as the
public is concerned, the central bank should pursue a policy of strict inflation
targeting with commitment. We can now add another condition: the central
bank should not switch policy.

13.6 Optimal Monetary Policy using the New Keynesian Model

13.6.1 Using Discretion

The Barro–Gordon model is a stylized version of the New Keynesian model. We
now consider optimal monetary policy using the New Keynesian model derived
earlier and given by equations (13.30) and (13.31). We repeat these equations
for ease of reference:

πt = (1− β)π∗ + βEtπt+1 + γxt + eπt, (13.62)

xt = Etxt+1 −α(Rt − Etπt+1 − θ)+ ext. (13.63)

We recall that xt = yt −yn is the output gap and eπt and ext are independent,
zero-mean, and serially uncorrelated shocks unknown to the central bank. A
key difference between this model and the Barro–Gordon model is that this
model possesses a dynamic structure.

We assume that in using its discretion the central bank chooses the interest
rate Rt to minimize the single-period quadratic cost function:

E(Qt) = 1
2E[(πt −π∗)2 +ϕ(xt − k)2], (13.64)

where other variables are as defined previously. It can be shown that

E
(
∂Qt
∂Rt

)
= E

[
∂πt
∂Rt

(πt −π∗)+ ∂xt∂Rt
ϕ(xt − k)

]
= 0.
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In order to evaluate the two derivatives we must use the solutions derived
earlier, namely equations (13.34) and (13.35), which are also repeated:

πt = − αγθ
η1(1− η2)

+ 1
η1
πt−1 + αγη2

η1

∞∑
s=0

ηs2EtRt+s +
αγ
η1
Rt−1

+ δ(eπt + γext)+ αγη1
(eπ,t−1 + γex,t−1),

∆xt = 1
η1
∆xt−1 − α

2γη2

η1

∞∑
s=0

ηs2EtRt+s +α
(

1− αγ
η1

)
Rt−1 − α

η1
Rt−2

−αδ(eπt + γext)− α
2γ
η1
eπ,t−1 −

(
1+ αγ

2

η1

)
ex,t−1 + 1

η1
ex,t−2.

If the change in the interest rate in period t is temporary, and is just for that
single period, then

∂πt
∂Rt

= αγη2

η1
,

∂xt
∂Rt

= −α
2γη2

η1
.

Hence,
E(πt −π∗)−αϕE(xt − k) = 0.

The relation between inflation and output is therefore

Eπt = π∗ +αϕE(xt − k).
Solving this for Ext and substituting into equation (13.62) gives the solution
for expected inflation:

Eπt = (1− β)π∗ + βEπt+1 + γ
[
k+ 1

αϕ
E(πt −π∗)

]

= β
1− (γ/αϕ)Eπt+1 + (1− β− (γ/αϕ))π

∗ + γk
1− (γ/αϕ) .

The solution therefore depends on the values of the parameters. Suppose that∣∣∣∣ β
1− (γ/αϕ)

∣∣∣∣ < 1.

The solution is therefore

Eπt = π∗ + γk
1− β− (γ/αϕ).

Thus Eπt ≷ π∗ depending on β+ (γ/αϕ) ≶ 1. And if ϕ = 0, or if k = 0, then
Eπt = π∗.

The solution for expected output is

Ext = k+ 1
αϕ

E(πt −π∗)

= k+ 1
αϕ

γk
1− β− (γ/αϕ).
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Hence

Ext = (1− β)
1− β− (γ/αϕ)k,

and so, for β < 1, we have Ext ≷ 0 depending on β+(γ/αϕ) ≶ 1. And ifϕ = 0,
or if k = 0, then Ext = 0.

To summarize, optimal inflation policy based on the NKM will achieve its
target if either the central bank is a strict inflation targeter, and so sets ϕ = 0,
or if k = 0. In both the cases the expected output gap is zero as Ext = 0. The
interest rate that achieves this may be obtained from equation (13.63) or, since
Ext = 0, from the Fisher equation, and is given by

Rt = Etπt+1 + θ
= π∗ + θ.

Consequently, the optimal choice is to set the nominal interest rate equal to the
long-run value consistent with the inflation target.

13.6.2 Rules-Based Policy

Previously we considered the behavior of inflation and output when monetary
policy was conducted using the rule

Rt = θ +π∗ + µ(πt −π∗)+ υxt + eRt. (13.65)

We found that the solutions for inflation and output were

πt = π∗ + 1
1+α(υ+ µγ)[(1+αυ)eπt + γext −αγeRt], (13.66)

xt = − 1
1+α(υ+ µγ)(αµeπt + ext − eRt). (13.67)

We treated the values of µ and ν as given. For example, the Taylor rule chooses
them as µ = 1.5 and ν = 0.5. We now consider the optimum choice of µ and ν .

From equations (13.66) and (13.67), the larger µ is, the smaller the impact
of all three shocks on inflation, and the output and interest rate shocks on
output, but the greater the impact of inflation shocks on output. The larger ν
is, the smaller the impact of all three shocks on output, and the output and
interest rate shocks on inflation, but the greater the impact of inflation shocks
on inflation.

To find the optimal values of µ and ν we evaluate E(Qt) by substituting the
solutions given by equations (13.66) and (13.67) into equation (13.64). As the
shocks are assumed to be independent of each other, we obtain

E(Qt)

= 1
2[1+α(υ+µγ)]2 {[(1+αυ)

2+ϕ(αµ)2]σ 2
π+(ϕ+γ2)σ 2

x+[ϕ+(αγ)2]σ 2
R}

+ 1
2ϕk

2,



�

�

“wickens” — 2007/10/15 — 13:08 — page 391 — #409
�

�

�

�

�

�

13.7. Monetary Policy in the Euro Area 391

where σ 2
π , σ 2

x , and σ 2
R are the variances of eπt , ext , and eRt , respectively. We

now minimize E(Qt) with respect to µ and ν . The general solution can only
be obtained numerically for specific values of the model parameters due to
the nonlinearities of the first-order conditions. But we can obtain a closed-
form solution with respect to one parameter of the rule, given the others. For
example, with ν = 0, minimizing E(Qt) with respect to µ gives

µ = γ
ϕα

{
1+ (ϕ + γ2)

σ 2
x

σ 2
π
+ [ϕ + (αγ)2]σ

2
R

σ 2
π

}
.

Hence, the greater the variances of the shocks to output and interest rates
relative to that of inflation shocks (i.e., σ 2

x/σ 2
π and σ 2

R/σ 2
π ), the greater the

interest rate response to inflation in excess of its target.
Alternatively, under strict inflation targeting, when ϕ = 0,

E(Qt) = 1
2[1+α(υ+ µγ)]2 [(1+αυ)

2σ 2
π + γ2σ 2

x + (αγ)2σ 2
R].

The optimal value of µ is therefore infinity. In this case E(Qt) = 0, irrespec-
tive of the choice of ν . However, choosing µ = ∞ would make interest rates
extremely volatile.

This identifies a new problem, namely, the economic cost of instrument
volatility. One way to deal with this is to modify the objective function by penal-
izing variations in interest rates, for example, by adding a term in (Rt−θ−π∗)2.
Since this may still result in frequent, though smaller, changes in interest rates,
a further modification could be to include in the objective function a term in
(∆Rt)2. This would have the effect of smoothing interest rate changes. Taken
together, the objective function would then be of the form

E(Qt) = 1
2E[(πt −π∗)2 +ϕ(xt − k)2 + η(Rt − θ −π∗)2 +ψ(∆Rt)2]. (13.68)

For further discussion of the conduct of monetary policy and other issues
related to optimal inflation targeting see Clarida et al. (1999, 2000, 2001), Gali
et al. (2004b), Gali (2008), Giannoni and Woodford (2005), Leeper et al. (1996),
Leeper and Zha (2001), McCallum and Nelson (1999), Svensson and Woodford
(2003, 2004), Walsh (2003), and Woodford (2003).

13.7 Monetary Policy in the Euro Area

The European Central Bank sets a common interest rate for the whole euro area.
We consider the consequences of this for inflation and output in individual
countries. Our analysis is based on a simple stylized New Keynesian model
adapted for open economies that share a common currency.

At first sight, a country with a higher inflation rate requires a higher interest
rate in order to reduce the output pressure on inflation. But this rate would then
be too high for a country with a lower inflation rate, which may need an output
stimulus. Choosing an interest rate somewhere between the two—which is the
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Figure 13.4. EU annual inflation (year-on-year) 1990–2006.

result of having a common interest rate—may also pose a problem. A country
with inflation higher than the common nominal interest rate would have a neg-
ative real interest rate. This would be expected to stimulate the economy and
tend to increase inflation in that country. Whereas a country with an inflation
rate below the nominal interest rate would have a positive real interest rate,
which would tend to deflate the economy and decrease inflation. This suggests
that a common interest rate for countries with widely differing inflation rates
could cause individual country inflation rates to diverge from each other.

There is, however, a factor that may offset this. The higher-inflation countries
would suffer a loss of competitiveness to the lower-inflation countries. This
would tend to reduce output, and hence the inflationary pressure, in the higher-
inflation countries, and raise output, and hence inflation, in the lower-inflation
countries. The issue, therefore, is whether this competitiveness effect is strong
enough to bring about the convergence of individual country inflation rates,
and hence lead to balanced economic activity in the currency union.

In figures 13.4 and 13.5 we consider the recent inflation experience of
euro area members together with Denmark and the United Kingdom, who are
not members of the euro area. Figure 13.4 plots the year-on-year inflation rates
for each country together with EU inflation (the heavier line) for the period
1990–2006. The corresponding U.K. inflation rate is the dotted line. EU infla-
tion was on a falling trend prior to the launch of the euro in 1999; afterwards
the EU inflation rate has fluctuated close to 2%. Convergence of individual coun-
try inflation rates seemed to occur until around 1993, but after that inflation
appears to show no tendency for any further convergence; in fact, since 2005,
inflation rates appear to have diverged somewhat.

Figure 13.5 plots the natural logarithms of the price levels of these EU coun-
tries from the start of 1999, the base for each series. Since the natural logarithm
of the price level for each country is zero in the first quarter of 1999, the data
depict cumulative inflation rates since 1999. Again the average EU price level
is the heavier line and the United Kingdom is the dotted line. The slopes of the
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Figure 13.5. The natural logarithm of EU price levels 1999–2006 (1999 = 0).

lines therefore measure the average inflation rates over the period 1999–2006.
(The increase in the dispersion of the lines is partly an artifact of the choice of
base period. Had the base period been the last period of 2006, the lines would
be shown converging at the end and not the start, but the slopes of the lines
would still convey the same information about average inflation.) The top line
is Ireland, which has had the highest inflation, and the bottom line is Germany,
which has had the lowest inflation. Thus price levels have steadily diverged,
implying a relative gain in competitiveness for countries below the EU line and
a loss in competitiveness for countries above the EU. In order of the size of the
gain in competitiveness we have Germany, France, and then Belgium.

The evidence seems to indicate that inflation rates have not diverged, but
neither have they converged, with the result that there has been a steady loss
of competitiveness by the high-inflation countries and a gain of competitiveness
by the low-inflation countries.

13.7.1 New Keynesian Model of the Euro Area

We now examine these issues more formally by constructing a model of the
euro area with a common monetary policy and with real interest rate, compet-
itiveness, and absorbtion effects. The absorbtion effects are captured by the
output of foreign countries, including of course other euro area countries. We
then derive the optimal discretionary monetary policy for the euro area subject
to this model. We wish to determine whether in theory competitiveness and
absorbtion effects bring about inflation convergence.

13.7.2 Model

The model for the euro area is based on a stylized open-economy version of
the New Keynesian model. It is sufficient to assume that the euro area consists
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of only two countries. We assume that each economy is described by two equa-
tions: open-economy aggregate demand and supply functions. These are

AD : xit = −β(Rt − Etπi,t+1)+ γ(pjt − pit)
+φ(st + p∗t − pit)+ δxjt + zit + exi,t, (13.69)

AS : πi,t+1 = Etπit +α(xit − xn,it)+ eπi,t+1, (13.70)

for i, j = 1,2, where 0 < δ,γ < 1, xit is the output of country i at time t, xn,it
is its long-run equilibrium (or natural) level of output, which is assumed to be
exogenous, pit is the price level of country i, pjt − pit is the terms of trade
for country i in trade with country j, st + p∗t − pit is the terms of trade for
country i in trade with the rest of the world, st is the exchange rate, which is
taken as given, p∗t is the rest of the world’s price level, and zit is an exogenous
variable affecting country i. eπit and exit are independent serially uncorrelated
shocks that are unknown to the central bank and are not part of the time t
information set, hence Eteπ,it = Etex,it = 0. Thus aggregate demand depends
on the real interest rate, the price differential (competitiveness), and foreign
demand (absorbtion effects). Output differs between the two countries due to
different inflation expectations, price levels, real rates of return, export demand,
and country-specific shocks. Inflation differs due to different inflation expecta-
tions, output gaps, and country-specific inflation shocks. We note that taking
the conditional expectation of equation (13.70) gives Etxit = xni,t . Thus output
is expected to be at its natural rate in each country.

We assume that the monetary authority—in the case of the euro, the European
Central Bank (ECB)—chooses the common interest rate Rt to minimize a single-
period quadratic cost function, which is defined for the entire euro area as

Et(Qt) = 1
2λEt(x̄t − x̄nt − k)2 + 1

2Et(π̄t+1 −π∗)2, (13.71)

where āt denotes the average of a1t and a2t so that

āt = θa1t + (1− θ)a2t

and θ is the relative size of the economies. Thus the aim is to choose the com-
mon nominal interest rate Rt to minimize the deviations of average EU inflation
π̄t+1 from the target level π∗ and average output x̄t from the target x̄nt + k,
k � 0. If the ECB were a strict inflation targeter, then λ = 0.

13.7.3 Optimal Monetary Policy

First we derive the optimal common nominal interest rate for this model and
the implications for expected EU inflation and output. We then derive the in-
flation and price-level differentials between euro area countries and examine
whether the model implies that either or both diverge. By specializing the model
through removing the two potential automatic stabilizers in the aggregated
demand function—namely the effects of competitiveness and absorbtion—
we may examine what happens to inflation and price-level divergence in the
absence of these two effects.
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For convenience, we assume that the two economies are of equal size, hence
θ = 1

2 . Average EU inflation and output are then

π̄t = 1
2(π1t +π2t),

x̄t = 1
2(x1t + x2t).

Target EU inflation is π∗. The aggregate model for the euro area is therefore

x̄t = − β
1− δ(Rt − Etπ̄t+1)+ φ

1− δ(st + p
∗
t − p̄t)+

1
1− δz̄t +

1
1− δēxt,

(13.72)

π̄t+1 = Etπ̄t+1 +α(x̄t − x̄nt)+ ēπ,t+1, (13.73)

which does not involve the price differential. Taking conditional expectations
of the aggregate model,

Etx̄t = − β
1− δ(Rt − Etπ̄t+1)+ φ

1− δ(st + p
∗
t − p̄t)+

1
1− δz̄t, (13.74)

Etπ̄t+1 = Etπ̄t+1 +α(Etx̄t − x̄nt). (13.75)

Hence Etx̄t = x̄nt .
Choosing Rt to minimize Et(Qt) gives the first-order condition

Et
(
∂Qt
∂Rt

)
= − βλ

1− δ(Etx̄t − x̄nt − k)− αβ
1− δEt(π̄t+1 −π∗) = 0.

This implies that the optimal rate of inflation for the euro area is

Etπ̄t+1 = π∗ − λα(Etx̄t − x̄nt − k)

= π∗ + λ
α
k. (13.76)

This is the familiar result derived above that in optimal inflation targeting under
discretion there is an aggregate inflation bias if both λ and k are positive, i.e.,
if the ECB is a flexible inflation targeter and seeks to achieve a higher level of
euro area output than the natural level. We note that none of the additional
variables in the aggregate demand function has affected this result.

In order to achieve the optimal level of inflation, from equation (13.74), the
ECB should set the common nominal interest rate equal to

Rt = π∗ + λαk−
1− δ
β
x̄nt − φβ (p̄t − st − p

∗
t )+

1
β
z̄t. (13.77)

Hence, monetary policy would respond negatively to higher aggregate output
and to a loss of euro area competitiveness with the rest of the world, and posi-
tively to exogenous effects such as an increase in euro area exports to the rest
of the world.

We now consider the implications for the two countries of this choice of
nominal interest rate. Substituting the nominal interest rate given by equa-
tion (13.77) into equation (13.69) and taking expectations gives the expected
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output for country i as

Etxit − x̄nt = −β
(
π∗ + λ

α
k− Etπi,t+1

)
− γEt(pit − pjt)

−φEt(pit − p̄t)+ δ(Etxjt − x̄nt)+ (zit − z̄t). (13.78)

Recalling that Etxit = xni,t and subtracting from equation (13.78) the corre-
sponding equation for country j gives the following equation for the expected
country inflation differential:

Et(πi,t+1 −πj,t+1) = φ+ 2γ
β

Et(pit − pjt)+ 1+ δ
β
(xni,t − xnj,t)− 1

β
(zit − zjt).

(13.79)
This is our key equation. It identifies the factors that cause a country inflation
differential.

13.7.4 Competitiveness and Absorbtion

If there are no competitiveness or absorbtion effects so that γ = φ = δ = 0,
then the price-level and natural output terms vanish and the inflation differ-
ential depends on only exogenous individual country effects. If these effects
are different (and remain constant), then the inflation differential will persist.
The price levels would then diverge over time without bound. This is consistent
with our earlier intuition.

Now assume that there are competitiveness and absorbtion effects so that
γ,φ,δ > 0. Equation (13.79) shows that the inflation differential may still per-
sist. A higher initial price level, a higher natural rate of output, and a smaller
response to world trade all cause inflation in country i to exceed that in coun-
try j. Moreover, the difference is greater, the stronger are the two competitive-
ness coefficients γ and φ, the larger is the absorbtion coefficient δ, and the
smaller is the response to the real interest rate β. Thus if country i starts with
a higher price level than country j, then the stronger the effect of competi-
tiveness, the larger the resulting inflation differential. The competitiveness gap
would then be expected to increase over time.

This can be shown more formally by noting that Etπi,t+1 = Etpi,t+1 − pit .
Hence equation (13.79) can be rewritten as

Et(pit − pjt) = β
β+φ+ 2γ

Et(pi,t+1 − pj,t+1)

− 1+ δ
β+φ+ 2γ

(xni,t − xnj,t)+ 1
β+φ+ 2γ

(zit − zjt), (13.80)

which is an unstable difference equation. Thus, any initial price differential
would grow without bound unless corrected by a reversal in sign, at some point
in the future, of the country differentials in the natural output levels or the
world trade effects. Consequently, the presence of the competitiveness effect
in the model does not prevent the price levels from diverging. And since the
other two variables in equation (13.80) are assumed to be exogenous, they are
unable to alter this unless, by chance, they offset each other.
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13.7.5 Is There Another Solution?

We have assumed that the natural output levels are exogenous. If instead they
are endogenous and if capital accumulation in each country is affected by its
real interest rate, then higher-inflation countries, which have lower real interest
rates, would also have higher natural rates of output. From equation (13.79) this
would raise the country inflation differential.

Despite these problems at the individual country level, euro area inflation is
unaffected. As its remit is euro area inflation, and not inflation in individual
euro area countries, there would be no incentive for the ECB to react to the
price divergence by changing interest rates. In fact, the ECB is powerless to do
anything about widening country price-level differentials using just monetary
policy.

In the absence of any countervailing forces, the divergence of country price
levels may pose a threat to the sustainability of the euro. At a minimum it
imposes a real cost to some member countries. How, then, might the single cur-
rency be sustained? From equations (13.79) and (13.80), the solution appears
to lie in finding offsetting effects that operate through either the natural out-
put differential or the exogenous variables. The long-run solution requires an
improvement in competitiveness that raises the natural output of the country
with lower inflation relative to that of the higher-inflation country. In the short
run, a fiscal transfer from the high-inflation to the low-inflation country would
help. This may be captured by the exogenous variables. In effect, this would
be a tax on inflation. This is what happens within a single country where high-
activity (and high-inflation) regions make net fiscal transfers to low-activity (and
low-inflation) regions. Often these take the form of unemployment benefits. For
further discussion of these issues see Wickens (2007).

13.8 Conclusions

In this chapter we analyzed monetary policy in a closed economy based on infla-
tion targeting in which the monetary-policy instrument is an official short-term
nominal interest rate under the control of the monetary authority (commonly
the central bank). The interest rate may be chosen either at the discretion of
the central bank or through commitment to a publicly known rule. We have
considered the implications for the economy based on the assumption that the
economy is described by some form of New Keynesian model of inflation and
output.

Our main finding is that the objectives of policy, as expressed in terms of
inflation, output, and social welfare, are best achieved through a central bank
that uses a rule rather than discretion and that focuses on targeting only infla-
tion and not output. Under a policy of discretion there appears to be little
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or no gain to either including output in the central bank’s objective func-
tion, or to trying to achieve a level of output in excess of its natural (i.e., full-
employment/long-run equilibrium) level as inflation ends up above target with-
out any compensating extra output. Whereas, by following a rule it is possible
on average to achieve the inflation target and to maintain output at its natural
level.

We have considered whether it is possible to choose the rule in an optimal way
(i.e., a way that maximizes social welfare). We found that this required giving
an extremely high weight to inflation in the rule and would result in making
the interest rate very volatile. Smoothing interest rates avoids this, and may
be accomplished by including the level and changes in the interest rate in the
objective function, together with inflation.

We extended the analysis to an open economy with a flexible exchange rate.
Under UIP, an increase in the domestic interest rate, for example, would cause
an appreciation in the exchange rate, which would reduce competitiveness, and
so reinforce the negative effect on output caused by a higher real interest rate.
In other words, having a flexible exchange rate would create an extra channel in
the transmission mechanism of interest rates to inflation. We found that under
both discretion and commitment to a rule, domestic inflation is determined pri-
marily by foreign inflation. The difference is that, by using discretion, it may be
possible to eliminate the influence of foreign inflation, whereas under a Taylor
rule there is in general only a partial offset of foreign inflation. This suggests
either the use of discretion or a different rule to the Taylor rule.

A consequence of having a fixed nominal exchange rate is that inflation in
the domestic economy is tied to that of the country to whose currency the
exchange rate is pegged. The role of domestic monetary policy is to maintain
the exchange-rate parity. Matters are somewhat different in the euro area. Mem-
ber countries achieve a fixed exchange-rate parity through sharing a common
currency. The ECB sets a single interest rate for the whole euro area by target-
ing the average inflation rate in the euro area. We have argued that even though
euro area inflation may be on target, differences in country inflation rates may
make the common interest rate too high for low-inflation countries and too low
for high-inflation countries. Due to the offsetting effects of competitiveness, we
have shown that individual country inflation rates are unlikely to diverge, but
individual country price levels may.

Although this chapter has reflected the concerns of modern monetary policy,
with its focus on an independent central bank using a single policy instrument
(its interest rate) to control inflation, we should bear in mind that other solu-
tions to the policy assignment issue are possible. As, in the short run, interest
rates affect output and fiscal policy affects inflation, a less restrictive approach
would be to combine monetary and fiscal policy to simultaneously achieve the
two major policy goals: the control of inflation and output stabilization. In the
long run, of course, we expect monetary policy to have no effect on output and,
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in the absence of monetary accommodation, fiscal policy to have no effect on
inflation.

One of the main reasons for preferring to assign interest rates to the control
of inflation through an independent central bank is that it gives monetary policy
greater credibility and transparency, which makes it more publicly accountable
and less open to short-term political pressures. There may, however, be a price
for this strict assignment: policy may be less effective, especially in the short
term, and there may be unwanted spillover effects elsewhere in the economy,
such as to the exchange rate, output, and unemployment. To set against this,
it has proved difficult to fine-tune fiscal policy in the short run: expenditures
take time to have an effect and are likely to be crowded out in the longer term
and, following the tax-smoothing arguments made in chapter 5, it is costly to be
continually altering taxes due to the disruptions to private decisions that this
causes. Hence, although, in principle, inflation targeting may not be the best
way to control inflation, in practice, it is so far proving to be the most effective.
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Real Business Cycles, DGE Models,

and Economic Fluctuations

14.1 Introduction

The aim in this book has been to explain how modern macroeconomic theory
has evolved in recent years. The main distinguishing features of this devel-
opment are the use at all times of models that describe the whole economy
rather than a part of the economy, an emphasis on intertemporal rather than
single-period models, and a focus on the macroeconomic consequences of indi-
vidual decisions, i.e., microfoundations, rather than theorizing directly about
aggregates. This has led to models of increasing complexity—often too com-
plex to be analysed without the use of numerical simulation. We started with a
small centralized, centrally planned, or representative-agent model of the econ-
omy which we then extended in various ways to include growth, decentralized
decisions and markets, government, the open economy, and money. When we
included additional features of observed economies, to simplify the analysis,
we tried where possible to revert to the original basic model. Nonetheless, in
the process, it became increasingly difficult to analyze their full general equi-
librium consequences, and we have often had to restrict our analysis to the
long-run properties of the model. Since our interest also includes the short-run
behavior of the models, we need to find another way to perform the analysis. In
addition we would like to know which features of the economy are important to
include in our models, how the economy responds to different types of shocks,
and what sorts of policy are effective.

These issues form part of the agenda of real-business-cycle (RBC) analysis,
which was initiated by the work of Kydland and Prescott (1982) and Long and
Plosser (1983). For a survey of RBC analysis see King and Rebelo (1999). The
first RBC empirical studies examined the effects of productivity (technology)
shocks on the main macroeconomic aggregates using the basic DGE model of
chapter 2, or closely related models. Subsequently, this methodology has been
extended to the study of a variety of shocks. In order to represent these shocks,
more complicated models were required. In this chapter we explain how to per-
form such an analysis, we report the evidence obtained in some of the more
influential studies, and we consider what this implies for the specification of
DGE models. In the process we extend the range of shocks considered to other
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types of supply shock, to demand shocks (in particular, to monetary and fis-
cal shocks), and to foreign shocks. We stress that our aim here is to examine
evidence on the general equilibrium properties of macroeconomic models.

In RBC analysis, the parameter values of the model are typically calibrated and
not estimated. This has proved a matter of contention, as the traditional way to
obtain parameter values is to estimate the model using standard econometric
estimation methods. We discuss the reasons why calibration methods have been
used instead.

Next we describe the methodology of RBC analysis using the growth model of
chapter 3 as the basis for the model. We then consider the empirical evidence
on various RBC models, including a real open-economy model. Finally, we exam-
ine at some length a very general DGE macroeconomic model of the monetary
economy that is estimated using Bayesian methods. This model enables us to
consider the effects of a variety of shocks, including monetary shocks.

14.2 The Methodology of RBC Analysis

We illustrate the analysis of real business cycles using the basic centralized
growth model of chapter 3. We choose a model with growth because we wish
to explain observed data. The model assumes that the economy is seeking to
choose consumption Ct , labor Nt , and capital Kt to maximize

Et
∞∑
s=0

βsU(Ct+s),

where U(Ct) = C1−σ
t /(1 − σ) and β = 1/(1 + θ), subject to the economy’s

resource constraint. This is derived from the national income identity, the
production function, and the capital accumulation equation, namely from

Yt = Ct + It,
Yt = AtKαt N1−α

t ,

∆Kt+1 = It − δKt.
The resulting resource constraint is

AtKαt N
1−α
t = Kt+1 + Ct − (1− δ)Kt.

We assume that labor is growing at the constant rate n, implying that

Nt = (1+n)tN0. (14.1)

The aim in RBC analysis is to determine the dynamic response of the economy
to productivity shocks. At denotes technological change. We assume that the
logarithm of At is a random walk with drift. Hence,

At = (1+ µ)tZt,
lnZt = zt, ∆zt = et ∼ i. i.d.(0,ω2).
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The drift term µ is the long-run rate of growth of technological change. et rep-
resents a serially uncorrelated productivity shock, which, through the econ-
omy’s dynamic structure, generates serially correlated behavior in the econ-
omy’s main aggregates: output, consumption, capital, investment, and employ-
ment. These assumptions imply that technological change consists of two com-
ponents: a deterministic exponential trend (1 + µ)t and a stochastic trend Zt ,
where zt = z0 +

∑t
s=0 es . As a result, output, consumption, capital, and invest-

ment are all nonstationary variables, even when measured as deviations about
their growth path.

In order to obtain the solution to the model, first we redefine all variables
in terms of deviations about their long-run growth paths. As in chapter 3, we
define the variables in per capita terms as

yt = Yt
N#
t
= Yt
[(1+ µ)1/(1−α)]tNt =

Yt
(1+ η)tN0

,

kt = Kt
N#
t
= Kt
[(1+ µ)1/(1−α)]tNt =

Kt
(1+ η)tN0

,

N#
t = (1+ µ)t/(1−α)Nt = [(1+ µ)1/(1−α)]t(1+n)tN0 = (1+ η)tN0,

where we have used the approximation

[(1+ µ)1/(1−α)]t(1+n)t � (1+ η)t,
η � n+ µ

1−α.
The national income identity is now

yt = ct + it,
where

ct = Ct
N#
t
= Ct
(1+ η)tN0

,

it = It
N#
t
= It
(1+ η)tN0

.

The production function becomes

yt = Ztkαt
and, since N#

t+1/N
#
t = 1 + η, the capital accumulation equation can be written

as

∆Kt+1 = It − δKt,
Kt+1

N#
t+1

N#
t+1

N#
t
= It
N#
t
+ (1− δ) Kt

N#
t
,

(1+ η)kt+1 = it + (1− δ)kt.
Consequently, the economy’s resource constraint becomes

Ztkαt = ct + (1+ η)kt+1 − (1− δ)kt. (14.2)
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Finally, we rewrite the utility function as

U(Ct) = C1−σ
t

1− σ
= [(1+ η)

tct]1−σ

1− σ .

As technological change has made the problem stochastic, we maximize the
value function

Vt = U(Ct)+ βEt(Vt+1)

= [(1+ η)
tct]1−σ

1− σ + βEt(Vt+1),

subject to the resource constraint (14.2). The first-order condition for this
stochastic dynamic programming problem is

∂Vt
∂ct

= (1+ η)(1−σ)tc−σt + βEt
[
∂Vt+1

∂ct+1

∂ct+1

∂ct

]
= 0.

Noting that

Vt+1 = U(Ct+1)+ βEt+1(Vt+2)

and hence
∂Vt+1

∂ct+1
= (1+ η)(1−σ)(t+1)c−σt+1,

and that
∂ct+1

∂ct
= ∂ct+1/∂kt+1

∂ct/∂kt+1

from the budget constraints for periods t and t + 1, we can show that

∂ct+1

∂ct
= αZt+1kα−1

t+1 + 1− δ
−(1+ η) .

Hence

∂Vt
∂ct

= (1+ η)(1−σ)tc−σt − βEt
[
(1+ η)(1−σ)(t+1)c−σt+1

αZt+1kα−1
t+1 + 1− δ

1+ η
]

= (1+ η)(1−σ)t{c−σt − βEt[(1+ η)−σc−σt+1(αZt+1kα−1
t+1 + 1− δ)]} = 0.

This gives the Euler equation

Et
[
β
[
(1+ η)ct+1

ct

]−σ
(αZt+1kα−1

t+1 + 1− δ)
]
= 1. (14.3)

In deriving the solution to the model it is usual in RBC analysis to invoke
certainty equivalence. This allows all random variables to be replaced by
their conditional expectations. As there is no risk-free rate in this model,
in the Euler equation, we should, strictly speaking, take account of the con-
ditional covariance terms involving ct+1, kt+1, and Zt+1 and, in particular,
covt(ct+1, kt+1).
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14.2.1 Steady-State Solution

Assuming a steady-state solution exists, it satisfies ∆ct+1 = ∆kt+1 = 0 and
Zt = 1 for each time period. Hence we can drop the time subscript in the steady
state to obtain

β(1+ η)−σ [αkα−1 + 1− δ] = 1.

As first shown in chapter 3, this implies that in equilibrium

k �
(
δ+ θ + σ(n+ (µ/(1−α)))

α

)−1/(1−α)
,

c = kα − (η+ δ)k.
Although kt is constant in equilibrium, Kt/Nt , the per capita capital stock of
the economy, is growing through time. As kt = Kt/([(1 + µ)1/(1−α)]tNt), the
optimal path for per capita capital is

Kt
Nt

=
[
δ+ θ + σ(n+ (µ/(1− a)))

α

]−1/(1−α)

[(1+ µ)1/(1−α)]t.

Hence Kt/Nt grows at approximately the rate µ/(1−α).
The optimal growth rate of per capita output Yt/Nt is determined from

yt = Yt/([(1+ µ)1/(1−α)]tNt).
As yt = kαt and ∆kt+1 = 0, it follows that ∆yt+1 = 0. Thus, the growth rate of
Yt/Nt is also approximately µ/(1 − α). The optimal growth rate of per capita
consumption Ct/Nt is obtained from the condition that ∆ct+1 = 0 and ct =
Ct/([(1 + µ)1/(1−α)]tNt). Thus the growth rate of Ct/Nt is also approximately
µ/(1 − α). The optimal growth rates of total output, total capital, and total
consumption are obtained by taking into account population growth. By adding
the growth rate of the population, we obtain their common rate of growth η =
n+ (µ/(1−α)).

14.2.2 Short-Run Dynamics

We now consider short-run deviations about the logarithm of the growth path.
The model reduces to two equations: the Euler equation and the resource
constraint. As they are nonlinear we linearize them by taking logarithmic
approximations of each based on the Taylor series approximation

f(xt) � f(x∗t )+ f ′(x∗t )
[
∂xt
∂ lnxt

]
x∗t
[lnxt − lnx∗t ]

� f(x∗t )+ f ′(x∗t )x∗t [lnxt − lnx∗t ].

Omitting the intercept, invoking certainty equivalence, and noting that
Et lnZt+1 = lnZt = zt and that, in equilibrium, zt = 0, the log-linear
approximation to the Euler equation can be shown to be

Et∆ ln ct+1 � −
(
η+ δ+ θ

σ

)
(1−α)Et lnkt+1 +

(
η+ δ+ θ

σ

)
zt. (14.4)
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Omitting the intercept once again, the log-linearized resource constraint is

lnkt+1 � −θ + η(σ −α− 2)+ (1−α)δ
α

ln ct

+ [1+ θ + (σ − 1)η] lnkt + θ + δ+ η(σ − 1)
α

zt. (14.5)

From equations (14.4) and (14.5) we obtain the linear system
⎡
⎢⎣1+ θ + (σ − 1)η −θ + η(σ −α− 2)+ (1−α)δ

α
0 1

⎤
⎥⎦
[

lnkt
ln ct

]

=

⎡
⎢⎢⎣

1 0
(
η+ δ+ θ

σ

)
(1−α) 1

⎤
⎥⎥⎦Et

[
lnkt+1

ln ct+1

]
−

⎡
⎢⎢⎢⎣
θ + δ+ η(σ − 1)

α

η+ δ+ θ
σ

⎤
⎥⎥⎥⎦zt. (14.6)

Denoting equation (14.6) by the matrix equation

Bxt = CEtxt+1 +Dzt, (14.7)

where x′t = (lnkt, ln ct), B and C are 2× 2 matrices, and D is a 2× 1 vector, we
can rewrite equation (14.7) as

xt = AEtxt+1 + Fzt, (14.8)

where A = B−1C and F = B−1D.
We now introduce the lag operator L. Recalling that Etxt+1 = L−1xt , we write

equation (14.8) as
(I −AL−1)xt = Fzt. (14.9)

The dynamic solution of equation (14.9) depends on the roots of the determi-
nantal equation

|A| − (trA)L+ L2 = 0.

There are two roots. Setting L = 1 gives three cases:

(i) |A| − (trA)+ 1 > 0 implies that both roots are either stable or unstable;

(ii) |A| − (trA)+ 1 < 0 implies a saddlepath solution (one root is stable and
the other is unstable);

(iii) if |A| − (trA)+ 1 = 0, then at least one root is 1.

Assuming that σ � α + 2—a sufficient but not necessary condition—it can
be shown that

|A|−(trA)+1 = −[θ + η(σ −α− 2)+ (1−α)δ](η+ ((δ+ θ)/σ))(1−α)
α[1+ θ + (σ − 1)η]

< 0.

Thus, the two roots satisfy η1 > 1 and η2 < 1, and so the short-run dynamics
about the steady-state growth path follow a saddlepath. Equation (14.9) can
therefore be written as

η1

(
1− 1

η1
L
)
(1− η2L−1)xt = adj(A− L)Fzt.
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Hence,

xt = 1
η1
xt−1 + 1

η1
(1− η2L−1)−1 adj(A− L)Fzt. (14.10)

Noting that Etzt+s = et for s � 0, equation (14.10) can be shown to simplify to

xt = 1
η1
xt−1 +G0et +G1et−1, (14.11)

which is a vector autoregressive-moving average (VARMA) model.
Equation (14.11) describes the dynamic behavior of ln ct and lnkt following

a technology shock et . The precise path followed by the economy depends on
the (deep) structural parameters of the model. The equation also implies that
the system returns to its steady state following a temporary technology shock;
in other words, the system is locally stable.

From the solutions for ln ct and lnkt we can derive the corresponding solu-
tions for Ct and Kt , and hence for Yt and It . As ln ct and lnkt are log deviations
about their steady-state growth paths, we must first add back their growth
paths. As the resulting variables are in per capita terms, we must then convert
them back to total consumption and capital, and then solve for total output
and investment from the national income identity and the capital accumulation
equation. We can also derive the implied wage rate from the marginal product
of labor, and the implied real interest rate from the net marginal product of
capital. If we include labor, this would give us the dynamic behavior of seven
macroeconomic variables.

The original purpose of RBC analysis was to see whether or not it was possi-
ble to match data generated by the model as a result of a technology shock to
the observed macroeconomic data. It is common to focus on matching the vari-
ances, covariances, and autocorrelations. The data generated by the model have
only one source of randomness, the technology shock, but the observed data
have seven independent sources of randomness. As a result, there is a singu-
larity in the variance–covariance matrix of the outputs of the model that is not
present in the observed data. One of the problems for RBC models, therefore, is
to specify additional sources of randomness in the model. We could, for exam-
ple, add a random shock to equation (14.1) to make the labor supply stochastic.
There would then be two random shocks in the solution, equation (14.11). Other
potential sources of shocks are preference shocks to the instantaneous util-
ity function, shocks to the capital accumulation equation, possibly reflecting,
among other things, depreciation effects, shocks to the relations between the
two marginal productivity relations associated with wages and the real interest
rate, and random shocks to the national income identity to reflect wasted out-
put or inventories. Incorporating all of these would permit seven independent
shocks generating the seven outputs of the model.

The variance–covariance matrix and the autocorrelations of the model out-
puts can be derived analytically by rewriting equation (14.11) as a vector moving
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average model:

xt =
∞∑
s=0

η−s1 (G0et−s +G1et−s−1)

=
∞∑
s=0

Hset−s .

It follows that
V(xt) = σ 2H(1)H(1)′,

where V(et) = σ 2 with H(L) = ∑∞
s=0HsLs and H(1) = H(L)|L=1. Hence, with

just one shock, V(xt) is a singular matrix. Hs defines both the autocorrelation
functions and the impulse response functions to a unit shock in et . These are
derived from the production function using

et = ∆ lnZt
= ∆ lnYt −α∆ lnKt − (1−α)∆ lnNt − (1+ µ),

where ∆ lnYt , ∆ lnKt , and ∆ lnNt are observed data and α and µ are calibrated
or estimated. The variance of et is σ 2.

In practice, in most RBC studies, these moments are calculated using numer-
ical simulation, rather than analytically. It is not then necessary to linearize the
model. The numerical simulation can be carried out in several ways. One way is
to generate the shocks by drawing independent random samples from a distri-
bution with a zero mean and given variance, and then to calculate the outputs
of the model. This requires a nonlinear rational-expectations solution proce-
dure. There are now a large number of these: see Canova (2005) and De Jong
and Dave (2007). The outputs are then detrended using an Hodrick–Prescott
(HP) filter and the sample moments are calculated. This can be repeated a large
number of times and the numerical distribution of each of the moments con-
structed. The means (or medians) of these distributions of the moments are
then calculated. Finally, the calculated means of the generated sample moments
are compared with the sample moments of the observed detrended data.

The main variant on this procedure concerns the way the random samples of
shocks are generated. Most studies estimate the technology shocks using the
Solow residuals. These are derived from the observed data after first detrending
them with the HP filter. Thus the estimated shocks are

êt = ln Z̃t
= ln Ỹt −α ln K̃t − (1−α) ln Ñt − (1+ µ),

where ln X̃t (X = Z,Y ,K,N) are the corresponding detrended data, and α and
µ are calibrated, or estimated. The variance of the shocks used in the first
method is the variance of the êt . The next step in this alternative approach
is to draw a random sample from the estimated residuals and to use this
sample to generate the outputs of the model and their moments. Repeated
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sampling from the same estimated shocks, and calculating the corresponding
model outputs and their sample moments, gives the numerical distributions of
these moments, from which the means are calculated. This second procedure
is known as bootstrapping.

The use of calibration instead of conventional econometric estimation has
proved highly controversial. Kydland and Prescott (1982) explain their use of
calibration as the result of seeking to calibrate the model to the situation of
interest. They argue that the selection of the parameter values should reflect the
specifications of preferences and technology that are used in applied studies,
and that they should be those values for which the model’s steady-state values
are near the average values for the economy over the period being explained. In
other words, they want parameter values appropriate for the problem at hand.

The danger in using conventional econometric estimation methods is that the
model is often then judged solely on statistical criteria, such as the model’s fit to
the data or the significance of the coefficient estimates. As a result, any appar-
ent misspecification is often dealt with by generalizing the dynamic structure
rather than by rethinking the underlying macroeconomic theory. The tempta-
tion to add dynamics is because corresponding to any complete simultaneous-
equation model of the economy, for each endogenous variable there exists a
specific univariate time-series representation or, for a group of variables, a vec-
tor autoregressive representation. These representations are either exact or can
be made very close approximations by including sufficient lags. Accordingly,
omitting variables that are serially correlated from a structural model can usu-
ally be largely compensated for by specifying a longer lag structure. Moreover,
without explicitly including the omitted variables, this misspecification would
be difficult, or even impossible, to detect. As calibrated DGE models usually
have simple dynamic structures, they tend to have a worse fit than estimated
models. A better way of judging a model is probably to focus more on its long-
run solution, as the long-run parameter values are usually something that we
are better informed about. When calibrating a model, this knowledge can be
exploited directly by imposing it on the model. In evaluating an estimated struc-
tural model it is possible to test the estimates of long-run parameters against
such prior knowledge. It is more difficult to carry out such a test on a calibrated
model, though not impossible.

Recently, methods of optimizing calibration have been proposed. One of
these is known as indirect inference. The attraction of this approach is that the
calibrated model can be evaluated using standard methods of statistical infer-
ence. Another advantage occurs when the model is nonlinear. Often it is difficult
to estimate such models using conventional econometric methods without first
having to linearize the model. Linearization is not usually required for optimal
calibration.

The idea is first to fit the data to a model using conventional estimation. This
model is called an auxiliary model and could be a vector autoregression or an
equation like (14.11). Second, the RBC model is calibrated and then simulated to
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produce artificial data. (We do not usually need to linearize the model in order
to obtain the simulation values.) Third, the auxiliary model is estimated using
the simulation data. The second and third steps are then repeated for different
calibrations of the RBC model. The optimal calibration is that for which the
estimated auxiliary model based on simulated data is closest to the estimated
auxiliary model obtained from the observed data. The comparison of the two
data sets may be made in many ways: by comparing the estimated coefficients
of the auxiliary model (Gregory and Smith 1993, 2000) or by comparing the ratio
of the likelihood functions or the scores of the likelihood functions (Tauchen
1996). For an account of the evaluation, optimal calibration, and simulation
of macroeconomic models, see Canova (2005), De Jong and Dave (2007), and
Gourieroux and Monfort (1996).

Although widely used, it is not clear that the HP filter is the best way to
detrend the data. According to the theory above we should detrend the loga-
rithms of the data using a linear trend. A problem with the HP filter is its greater
flexibility, which depends on the choice of the parameter λ, which is the weight
given to having a smooth trend. It controls whether, at one extreme, the trend
follows the original data exactly or, at the other extreme, it follows a linear
trend. Although specific values of λ are commonly chosen, any choice between
the two extremes is in fact arbitrary. We note that by deviating from a linear
trend, the HP filter reduces the volatility of the shocks that result.

We have described the methodology used to evaluate RBC models. In princi-
ple, it is straightforward to modify this so that it can deal with the more general
DGE macroeconomic models considered in earlier chapters. We would, however,
need to give more thought to the sources of randomness in the economy than
we have previously and to whether we estimate or calibrate the model. The
properties of the resulting numerical model can then be derived.

14.3 Empirical Evidence on the RBC Model

Most of the empirical evidence on DGE macroeconomic models is concerned
with RBC models. There are a large number of these. Rather than attempt to
present each RBC model and each data set, as nearly all are versions of the
model discussed above and the findings do not alter greatly for different time
periods, we focus on summarizing their principal findings. Our aim is to identify
the main factors that explain business cycles and, more generally, fluctuations
in key macroeconomic variables. Most of this evidence relates to the United
States. Our initial discussion concerns the basic RBC model and some exten-
sions of it. We then consider an RBC model of the open economy and, finally,
a DGE model of the monetary economy. A useful general source of informa-
tion on RBC models is the Web site of the Euro Area Business Cycle Network:
www.eabcn.org.
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Table 14.1. Calibration of baseline RBC model.

σ β φ γ η α δ ρ ω
1 0.984 3.48 1 0.004 0.667 0.025 0.979 0.0072

Table 14.2. U.S. business cycle and baseline model statistics 1947.1–1996.4.
(The numbers in parentheses are model statistics.)

Relative
Standard standard First-order Correlation
deviation deviation autocorrelation with output

Y 1.81(1.39) 1.00(1.00) 0.84(0.72) 1.00(1.00)
C 1.35(0.61) 0.74(0.44) 0.80(0.79) 0.88(0.94)
I 5.30(4.09) 2.93(2.95) 0.87(0.71) 0.80(0.99)
N 1.79(0.67) 0.99(0.48) 0.88(0.71) 0.88(0.97)
Y/N 1.02(0.75) 0.56(0.54) 0.74(0.76) 0.55(0.98)
w 0.68(0.75) 0.38(0.54) 0.66(0.76) 0.12(0.98)
r 0.30(0.05) 0.16(0.04) 0.60(0.71) −0.35(0.95)
A 0.98(0.94) 0.54(0.68) 0.74(0.72) 0.78(1.00)

14.3.1 The Basic RBC Model

Our discussion of the basic RBC model derived above draws heavily on King and
Rebelo (1999) and Rebelo (2005), but see also King and Plosser (1988), King et al.
(1988a,b), Cooley (1995), and Marimon and Scott (1999). The only significant
difference between King and Rebelo’s model and the RBC model above lies in
the treatment of labor. Population growth is ignored and the utility function
includes leisure as an argument. Their utility function is defined as

U(ct, Lt) = c1−σ
t

1− σ +
φ

1− γ (L
1−γ
t − 1),

where Lt is leisure and Nt is work, with Lt +Nt = 1. All of the other equations
are defined as above. Technological progress is specified as

lnAt = α lnΨt + ln Γt,
lnΨt = lnΨt−1 + lnξ,
ln Γt = ρ ln Γt−1 + εt,

where εt is an i. i.d.(0,ω2) shock. Thus, there is both a permanent and a tem-
porary component to the technology shock and they are defined, respectively,
by lnΨt and ln Γt . As a result, there is an extra first-order condition for leisure.
Nonetheless, apart from the specification of the technology shock, the model
solution is the same as for the growth model. This is a point made in chapter 3.
The parameter values chosen to calibrate King and Rebelo’s baseline RBC model
are given in table 14.1.

The aim is see how well the baseline model can reproduce the business-cycle
statistics for the U.S. economy for the period 1947.1–1996.4. These numbers are
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those not in parentheses in table 14.2. With exception of the real interest rate, all
variables are in per capita terms and are logarithms, and have been detrended
with the HP filter. The numbers in parentheses in table 14.2 are calculated from
the baseline model.

The observed data show that per capita consumption is highly contempora-
neously correlated with per capita output, has three-quarters of the volatility
of per capita output, and a similar first-order autocorrelation. (We may inter-
pret the correlation coefficients as representing long-run comovements with
output.) Per capita investment is nearly three times as volatile as per capita out-
put and has a slightly lower correlation. Labor (per capita hours) has the same
volatility as per capita output and is highly correlated with per capita output,
but output per hour has a lower volatility and correlation. This suggests that
short-term variations in employment are largely the result of fluctuations in
output. The real-wage rate (compensation per hour) is much less volatile than
per capita output and has a very low correlation with per capita output, which
shows the relative stickiness of real wages. The real interest rate has an even
lower volatility and has a negative correlation with per capita output. Finally,
(total factor) productivity has half the volatility of per capita output, but has a
high correlation.

The corresponding results for the baseline RBC model are in parentheses.
Broadly, the simulated variables have lower volatilities and higher correlations
with output than the observed variables. The autocorrelations reveal little. Con-
sumption and investment are too smooth. But the main discrepancies are the
very high correlations with output of labor productivity, wages, and the real
interest rate; the real interest rate is also far too smooth. In King and Rebelo’s
view, the baseline RBC model does a surprisingly good job for such a simple
model.

What can we learn from these results about the adequacy of the baseline
RBC model? One problem is the labor market. In the model, the variability of
employment is far too low, and the correlation of wages with output is much
too high, as is labor productivity. This suggests that, in practice, wages are
much less flexible, and employment more flexible, than in the model. Further-
more, in practice, wages seem to be less closely tied to their marginal product
and employment responds slightly less to output. These findings are consis-
tent with a higher degree of wage stickiness and the presence of additional
shocks, perhaps on the supply side, which raise the volatility of all of the main
macroeconomic aggregates and reduce the correlations with output.

The greatest discrepancy is in the correlation between the real interest rate
and output. In the observed data it is negative and in the simulated data it
is close to unity. This suggests that market real interest rates are not closely
related to the marginal product of capital. This indicates a gap between the
equity price and the fundamental value of a firm. It also reflects the fact that real
interest rates are determined in financial markets and are affected by monetary
policy, and do not simply represent the real return to capital.
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Consumption poses another conundrum. It is far more volatile in practice
than in the model, and nearer to the volatility of output, but has a slightly
lower correlation with output. Again this suggests that there is a separate shock,
and this affects consumption differently from output. According to life-cycle
theory, consumption depends on after-tax income and wealth, not on output.
Furthermore, wages are sticky but employment is more variable than in the
model. This indicates that there may be other factors that affect consumption
besides output, such as taxes, financial and other sources of wealth, and income
from employment fluctuations—perhaps due to unemployment.

The main problem with the RBC model is that it is based on just one type of
shock, a technology shock. It is not difficult to conceive that a positive shock
(such as a new invention like computers) will raise output, and that a negative
supply shock (such as harvest failure) would reduce output in an economy (par-
ticularly one heavily dependent on agriculture). It is much more difficult to see
how a negative technology shock could cause a recession; it is even less likely
that the Great Depression can be attributed to a negative technology shock.
Moreover, the estimate of the technology shock, which is based on the Solow
residual, is, in reality, likely to be a mixture of effects, including the under-
utilization of factor inputs. The production function assumes that capital and
labor are fully used, but in practice they are likely to be underused in down-
turns, and not written off or made redundant. The Solow residual will therefore
include the effects of other shocks.

However well the simple RBC model is thought to perform, these findings
point strongly to the need for a more general model of the economy. The DGE
macroeconomic framework that we have developed in this book has sufficient
richness and flexibility to generate a model of the economy that overcomes the
failings that we have identified in the basic RBC model.

14.3.2 Extensions to the Basic RBC Model

Attempts to improve on the RBC model have focused on additional types of
shocks. Demand shocks are an obvious candidate. These include monetary
and fiscal shocks—such as the interest rate, government expenditures, and tax
changes—preference shocks, and external trade shocks. Other types of shocks
include labor-supply shocks arising from changing labor participation and pop-
ulation changes, raw material price shocks, such as oil price changes, terms-
of-trade effects due to foreign productivity shocks, and exchange-rate shocks.
Another line of research has focused on the internal structure of the model—
such as the degree of substitutability between consumption and leisure—and
indivisibilities in labor inputs, which constrain the choice of the number of
hours to work and permit flexibility only in the decision of whether or not to
participate in the labor force. Apart from preference shocks, these are all issues
we have considered previously.

One of the first extensions considered in the literature was an attempt to
enhance the response of the aggregate labor supply. Noting that the evidence
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pointed more to the potential role of substitution between work and leisure
(the extensive margin) than to variations in the number of hours worked (the
intensive margin), two strategies were adopted. One assumed that households
have reservation wages below which they are unwilling to work, and these dif-
fer across households: see Cho and Rogerson (1988). The other assumed that
households are identical, but some people work a given number of hours while
others work none (the indivisible labor model): see Hansen (1985) and Rogerson
(1988). The allocation between work and unemployment is assumed to be ran-
dom. Hansen finds that this leads to a higher labor elasticity, which increases
the standard deviation of employment (total hours) relative to productivity
compared with the baseline model.

Another early extension of the basic model was the inclusion of govern-
ment spending shocks: see Christiano and Eichenbaum (1992), Baxter and King
(1993), and McGrattan (1994). The argument used was that a positive shock to
the labor-supply function, i.e., a shift outwards, would increase employment
and wages while reducing the size of the response of wages. McGrattan sug-
gests that households substitute between taxable and nontaxable activities in
response to changes in tax rates to finance government expenditures, and this
alters the variability of consumption, investment, hours worked, and produc-
tivity. The result is a lower correlation between hours worked and productiv-
ity. Although producing results that are closer to the data, fiscal shocks are
probably too small to be a major source of business cycles.

Baxter and King study the effects of different fiscal policy shocks based on
a DGE model calibrated on U.S. data from 1930 to 1985. In contrast to the
RBC model above, their model allows government expenditures to affect util-
ity and productivity, and includes the government budget constraint and fiscal
transfers. Their main findings are: (i) that permanent changes in government
purchases have important effects on macroeconomic activity when financed
by lump-sum taxes—they suggest that the long-run multiplier may even be
greater than unity; (ii) that the method of financing is more important than the
direct resource cost of the purchases—for example, when financed by income
taxes, output falls in response to higher government purchases; (iii) that the
effect of government purchases also depends on whether they influence pri-
vate marginal product decisions—for example, by augmenting the productivity
of private capital and labor, and by affecting private investment.

Following the analysis of the Great Depression by Friedman and Schwarz
(1963)—which attributed the depression largely to a tightening of U.S. mon-
etary policy—and Friedman’s (1968) lecture on monetary policy, a monetary
shock is thought to have a strong impact on output for about two years. It is
therefore surprising to find that until recently monetary shocks did not have
a prominent role in RBC models: see Dotsey et al. (1999), Clarida et al. (1999),
and Christiano et al. (1999). It is clear from our earlier discussion that imperfect
price and nominal-wage flexibility could easily be calibrated to produce the sort
of business-cycle responses found in observed data. It has also been found that
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a technology shock only produces a large expansionary effect on output in the
short run if monetary policy is accommodative: see Altig et al. (2004) and Gali
et al. (2004a). We return to these issues later.

14.3.3 The Open-Economy RBC Model

Most of the research on real business cycles relates to the United States, which,
in many respects, is close to being a closed economy. In comparison, most other
countries are small open economies strongly affected by the rest of the world
and, in particular, by the United States, which is likely to be a major source of
shocks for most other economies. There are few studies of open-economy RBC
models. Perhaps the first, and still the best known, is that by Backus, Kehoe,
and Kydland (Backus et al. 1995), who investigate international business cycles.
They apply the baseline RBC model to ten OECD countries and examine their
comovements with the United States and the effects of terms-of-trade shocks.

Their benchmark model is essentially the baseline model above with the
addition in the national income identity of government expenditures and net
exports. Government expenditures are assumed to be generated by an autore-
gressive process and net exports are treated as a residual in the national
income identity, i.e., output less consumption, investment, and government
expenditures. The utility function is

U(ct, lt) = (c
ν
t l

1−ν
t )1−σ

1− σ ,

which implies that consumption and leisure are nonseparable.
They also consider a modification to the benchmark model designed to endo-

genize net exports in order to examine the effects of terms-of-trade shocks.
A two-country model is constructed in which each country specializes in the
production of a single good labeled a for country 1 and b for country 2. The
resource constraints for the two countries are

y1t = a1t + a2t = F(k1t, n1t),

y2t = b1t + b2t = F(k2t, n2t),

where a2t and b2t are exports. The production functions are

F(kit,nit) = Zitkαitn1−α
it

and there are time-to-build effects, so investment is

iit =
J∑
j=1

φjii,t−j,

where ii,t−j are investment starts begun in period t − j.
In order to introduce imperfect substitutability between domestic and foreign

goods, in each country total expenditures on consumption and investment plus
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government expenditures are specified as composites of domestic and foreign
goods as follows:

c1t + iit + git = G(a1t, b1t) = (ωa1−ϕ
1t + b1−ϕ

1t )1/(1−ϕ),

c2t + i2t + g2t = G(b2t, a2t) = (ωb1−ϕ
2t + a1−ϕ

2t )1/(1−ϕ).

The elasticity of substitution between domestic and foreign goods is given
by 1/ϕ. If q1t and q2t are the prices of domestic and foreign goods, then, in
equilibrium, their relative price—the terms of trade—is

Qt = q2t

q1t
= ∂G/∂b1t

∂G/∂a1t

= 1
ω

(
a1t

b1t

)ϕ
.

The trade balance of country 1, expressed in units of the domestic good, is

x1t = a2t −Qtb1t.

The shocks to the two economies are productivity and government expendi-
ture shocks which satisfy the VARs:

Zt+1 = AZt + et+1,

gt+1 = Bgt + εt+1,

where Zt = (Z1t, Z2t)′, gt = (g1t, g2t)′, and the government expenditure
shocks are uncorrelated but the technology shocks are correlated across the
two countries.

Using calibration, the parameters are chosen to be β = 0.99, σ = 2, ν = 0.34,
α = 0.36, δ = 0.025, corr(e1, e2) = 0.258, J = 4, and

A =
[

0.906 0.088

0.088 0.906

]
.

Consequently, corr(Z1, Z2) = 0.015.
We now compare for several countries various moments calculated from the

observed data with simulated data obtained from the benchmark economy and
from variants on the benchmark economy. We report only a selection of the
results of Backus, Kehoe, and Kydland.

Table 14.3 shows sample statistics based on observed data for the United
States, Canada, Germany, Japan, and the United Kingdom for different versions
of the model. The data are detrended using the HP filter and the model statistics
are based on twenty stochastic simulations for one hundred periods which are
then HP filtered. For the most part the observed statistics across countries are
not too dissimilar. We therefore concentrate our discussion on comparing the
statistics across the various models with those of the observed data.

In the benchmark model, government expenditures are constrained to be zero
and there are no terms-of-trade effects. The model data refer to domestic pro-
ductivity shocks. The main differences with the observed data are the lower
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Figure 14.1. Effects in the home country.
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Figure 14.2. Effects in the foreign country. The change in the productivity shock is
measured as a percentage of its steady-state value. Changes in other variables are
measured as percentages of the steady-state value of output.

volatility in consumption and the low correlation of investment with output.
Figures 14.1 and 14.2, which are reproduced from Backus et al. (1995), show
the impulse response functions of the home and foreign countries to a domestic
technology shock.

The largest effect is that on investment. It also leads to a deficit in net exports,
which is not shown. Eventually the home productivity shock affects the foreign
economy causing an increase in its productivity. Despite this, foreign output
and investment fall initially, but consumption rises a little. The correlations
between corresponding variables in each country are shown in table 14.4. The
Europe column refers to the observed correlation between the United States
and Europe. Thus, in the benchmark model the consumption correlations are
high and positive, which reflects consumption risk sharing (under complete
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Table 14.4. Correlation of home and foreign variables.

Europe Benchmark Autarky

Output 0.66 −0.21 0.08
Consumption 0.51 0.88 0.56
Investment 0.53 −0.94 −0.31
Employment 0.33 −0.78 −0.51
Productivity 0.56 0.25 0.25

markets this correlation would be unity), the productivity shocks are positively
correlated, but the other three correlations are negative. This is in contrast
to the observed data where all are positively correlated. Backus, Kehoe, and
Kydland interpret these differences in the signs of the correlations between
output, investment, and employment as being due to a shift of resources from
the foreign to the home economy as a result of the greater productivity boost
to the home economy. They call this a quantity anomaly.

Backus, Kehoe, and Kydland examine the effects of adding transport costs.
This substantially reduces the variability of net exports, from 3.77 in the bench-
mark model to only 0.37, and the variability of investment relative to output,
but makes little difference otherwise.

If all trade is prohibited, then we have autarky. Unsurprisingly, this reduces
the correlation of consumption between countries and, ignoring the sign, of
output, investment, and employment. One way to raise these correlations is
to increase the correlation between the productivity shocks. Backus, Kehoe,
and Kydland say that this does not simultaneously raise both the output and
consumption correlations: if one rises, the other does not.

In the modified benchmark model, which is designed to take account of
changes in the terms of trade,ϕ = 0.67,ω is chosen to set the share of imports
in GDP equal to 0.15, and J = 1. The results are summarized in table 14.3 in
the last three rows. In the modified benchmark model the correlation of output
with net exports is close to zero and much lower than in the data, but the cor-
relation with the terms of trade is much higher than in the data. The obvious
explanation is that productivity shocks have a large terms-of-trade effect and
this offsets the effect on net exports. However, with the exceptions of Canada
and Germany, the correlation between the terms of trade and net exports in
the theoretical model is not dissimilar to the original data. Backus, Kehoe, and
Kydland describe this as a price anomaly. In other experiments, government
expenditure shocks and a larger share of imports in GDP are examined. The
results differ little from those above.

The Backus, Kehoe, and Kydland study marked a large step forward in the
use of RBC models to study the open economy. The results raise a number of
problems with the theoretical model that are yet to be resolved. One obvious
flaw in the theoretical model is that it is for the real economy and ignores
nominal-exchange-rate effects. We have argued in chapter 3 that variation in
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the terms of trade (and in the real exchange rate) are dominated in the short
run by nominal-exchange-rate movements. This is reflected in the second row
of table 14.2: for the modified benchmark model the standard deviation is only
0.48, whereas in the data it is much greater.

14.4 DGE Models of the Monetary Economy

We began our study of DGE models with the real closed economy; we then
extended this to the open economy; finally, we considered a monetary econ-
omy. Much of the empirical evidence about the monetary economy relates to the
New Keynesian model—see, for example, Batini et al. (2005), Gali et al. (2001,
2005), King and Plosser (2005), Leeper and Zha (2000), Roberts (1995), and
Smith and Wickens (2007)—or to VAR models of the economy for which there
is a vast literature—see, for example, Canova and De Nicolo (2002), Christiano
et al. (1999, 2005), and Leeper et al. (1996). This evidence indicates that mone-
tary shocks have important real effects in the short run. The main weakness of
the VAR studies is their identification of monetary shocks: see Canova (1995)
and Wickens and Motto (2000). Our present interest is, however, in the gen-
eral equilibrium implications of a monetary economy as characterized in a DGE
macroeconomic model.

In an ambitious study, Smets and Wouters (2003) estimated a closed-economy
DGE model for the euro area using Bayesian methods rather than calibration.
Their model incorporates many of the New Keynesian features discussed previ-
ously, notably, sticky nominal prices and wages generated by a Calvo staggered-
adjustment model. It also includes two supply shocks (a productivity and a
labor-supply shock), three demand shocks (a preference shock, a shock to
investment demand, and a government expenditure shock), three cost-push
shocks (to the markups in the goods and labor markets and to the capital risk
premium), and two monetary-policy shocks.

Unsurprisingly, in view of the number of issues addressed, the specification
of the model is considerably more complex than the models we have considered
before. Part of its interest is that it incorporates many of the features described
in previous chapters. It shows how they can be fitted together to form a model
of the economy, albeit of a closed one.

14.4.1 The Smets–Wouters Model

14.4.1.1 Households

The household utility function is

U
(
cit, nit,

Mit
Pt

)
=
[
(cit − hcit−1)1−σc

1− σc − n
1+σn
it εn

t

1+ σn + (Mit/Pt)
1−σmεm

t
1− σm

]
εB
t ,

where cit , nit , and Mit/Pit denote the consumption, work, and real-money bal-
ances of the ith household, the εi

t (i = B,n,m) are preference shocks, and Pt is
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the general price level. The term hct−1 is to capture consumption habits, where
ct is aggregate consumption. The real household budget constraint is

Mit
Pt

+ pB
t
Bit
Pt
= Mt−1

Pt−1
+ Bi,t−1

Pt−1
+yit − cit − iit,

where bonds Bit are one-period securities with a price of pB
t . Total household

income is

yit = witnit + ait + r k
t zitki,t−1 − Ψ(zit)ki,t−1 + dit,

where wit is the real-wage rate, kit is the capital stock, r k
t is the rate of return

to capital, the term r k
t zitki,t−1 − Ψ(zit)ki,t−1 represents income from capital

after depreciation, zit is capacity utilization, and dit is dividend income.
The resulting Euler equation is

Et
[
β
λt+1

λt
RtPt
Pt+1

]
= 1,

where Rt is the gross nominal rate of return on bonds (Rt = 1/pB
t ) and λt is the

marginal utility of consumption:

λt = (ct − hct−1)−σcεB
t .

The demand for money is(
Mt
Pt

)−σm
εm
t = (ct − hct−1)−σc − 1

Rt
.

Households are assumed to act as price setters in the labor market. Their
nominal wages are given by

Wit =
(
Pt−1

Pt−2

)γ
Wi,t−1.

Households set their nominal wages to maximize their intertemporal objective
function subject to their budget constraint and the demand for labor, which is
given by

nit =
(
Wit
Wt

)−(1+λw,t)/λw,t
nt,

where nt , the aggregate labor demand, andWt , the aggregate nominal wage, are
given by

nt =
[∫ 1

0
(nit)1/(1+λw,t) di

]1+λw,t
,

Wt =
[∫ 1

0
(Wit)−1/λw,t di

]−λw,t
,

and
λw,t = λw + ηw

t ,

where ηw
t is an i.i.d. shock.



�

�

“wickens” — 2007/10/15 — 13:08 — page 421 — #439
�

�

�

�

�

�

14.4. DGE Models of the Monetary Economy 421

The result of this maximization is the following markup equation for the
reoptimized wage:

w̃t
Pt
Et

∞∑
s=0

βsξsw
(
Pt/Pt−1

Pt+s/Pt+s−1

)γ ni,t+sUc,t+s
1+ λw,t+s = Et

∞∑
s=0

βsξswni,t+sUn,t+s ,

where w̃t is the new optimal nominal wage and ξw = 0 if wages are perfectly
flexible. The real wage is a markup 1+λw,t over the current ratio of the marginal
disutility of labor to the marginal utility of an additional unit of consumption.
As a result, the aggregate wage satisfies

W−1/λw
t = ξ

[
Wt−1

(
Pt−1

Pt−2

)γ]−1/λw
+ (1− ξ)w̃−1/λw

t .

Households, who own firms, choose the capital stock and investment to max-
imize their intertemporal utility subject to their budget constraint and the
capital accumulation condition

kt = (1− δ)kt−1 + I
( itεi

t
it−1

)
it,

where I(itεi
t/it−1) is an adjustment cost function and εi

t is an investment shock
determined by the autoregression

εi
t = ρεi

t−1 + ηi
t.

The first-order conditions give

Qt = Et
[
β
λt+1

λt
[Qt+1(1− δ)+ zt+1r k

t+1 − Ψ(zt+1)]
]
,

1 = QtI′
( itεi

t
it−1

)( itεi
t

it−1

)
+ βEtQt+1

λt+1

λt

(it+1εi
t+1

it

)(it+1εi
t+1

it

)(
it+1

it

)
,

r k
t+1 = Ψ ′(zt),

where Qt is the value of installed capital.

14.4.1.2 Firms

It is assumed that there is a single final competitive good and a continuum
of monopolistically produced intermediate goods indexed by j, where j is dis-
tributed over the unit interval (j ∈ [0,1]). The final good is produced from
intermediate goods by

yt =
[∫ 1

0
yj(1/(1+λp,t))t dj

]1+λp,t
,

where yjt is the intermediate good and νt is a markup generated by

λp,t = λp + ηp
t ,
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where ηp
t is an i.i.d. shock. Cost minimization gives the demand function for

intermediate goods as

yjt =
(pjt
Pt

)−(1+λp,t)/λp,t
yt

and the final goods price level, which is

Pt =
[∫ 1

0
(pjt)−1/λp,t dj

]−λp,t
,

where pjt are the prices of intermediate goods.
The production functions for intermediate goods are

yjt = (ztkj,t−1)αN1−α
j,t ε

a
t −Φ,

whereNj,t is an index of different types of labor used by firms, Φ is a fixed cost,
and εa

t is the productivity shock. Cost minimization implies that

WtNj,t
r k
t ztkj,t−1

= 1−α
α

.

The firm’s marginal cost is

MCt = 1
εa
t
W 1−α
t (r k

t )
a[α−α(1−α)−(1−α)],

which is independent of the intermediate good produced. The firm’s nominal
profits are

πj,t = (pjt −MCt)
(pjt
Pt

)−(1+λp,t)/λp,t
yt −MCtΦ.

Firms are assumed to be able to reoptimize their price randomly with prob-
ability 1− ξp, as in the Calvo model. The optimal price p̃t is obtained from the
first-order condition

Et
∞∑
s=0

βsξspλt+syj,t+s
[
p̃t
Pt

(
Pt+s−1/Pt−1

Pt+s/Pt

)γ
− (1+ λp,t+s)MCt+sPt+s

]
= 0,

which shows that the optimal price is a function of future marginal costs and is
a markup over them unless λp = 0. The general price index therefore satisfies

P−1/λp,t
t = ξp

(
Pt−1

(
Pt−1

Pt−2

)λp)−1/λp,t
+ (1− ξp)p̃−1/λp,t

t .

14.4.1.3 Market Equilibrium

Final goods-market equilibrium satisfies the national income constraint

yt = ct + it + gt + Ψ(zt)kt−1.
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14.4.1.4 The Log-Linearized Model

For the empirical analysis the model is log-linearized around its nonstochastic
steady state. Denoting log-deviations about equilibrium by a caret (or hat), and
noting that variables dated t + 1 are rational expectations, the log-linearized
model is

ĉt = h
1+ hĉt−1 + 1

1+ hĉt+1 − 1− h
(1+ h)σc [(R̂t − π̂t+1)+ (ε̂b

t − ε̂b
t+1)],

ît = 1
1+ βît−1 + β

1+ βît+1 + ϕ
1+ βQ̂t + βε̂

i
t − ε̂i

t,

Q̂t = −(R̂t − π̂t+1)+ 1− δ
1− δ+ r̄ k

Q̂t+1 + r̄ k

1− δ+ r̄ k
r̂ k
t + ηQ

t ,

π̂t = ν
1+ βγp π̂t−1 + β

1+ βγp π̂t+1

+ (1− βξp)(1− ξp)
(1+ βγp)ξp [αr̂ k

t + (1−α)ŵt − ε̂a
t + ηp

t ],

ŵt = 1
1+ βŵt−1 + β

1+ βŵt+1 + γw
1+ βπ̂t−1 − 1+ βγw

1+ β π̂t + β
1+ βπ̂t+1

− (1− βξw)(1− ξw)
(1+ β)[1+ ((1+ λw)σn/λw)]ξw

×
[
ŵt − σnN̂t − σc

1− h(ĉt − hĉt−1)− ε̂n
t − ηw

t

]
,

N̂t = −ŵt + (1+ Ψ)r̂ k
t + k̂t−1,

ŷt = (1− δky − gy)ĉt + δkyît + gyεg
t

= φ[ε̂g
t +αk̂t−1 +αψr̂ k

t + (1−α)N̂t],
R̂t = ρR̂t−1 + (1− ρ)[π̄t + rπ(π̂t−1 − π̄t)+ ryŷt]

+ r∆π(π̂t − π̂t−1)+ r∆y(ŷt − ŷt−1)− raηa
t − rnηn

t + ηR
t ,

whereϕ = I′′−1, β = (1−δ+ r̄ k)−1,ψ = Ψ ′(1)/Ψ ′′(1), π̄t is the inflation target,
and the equations include various parameters that are long-run average values.
Thus, there are nine endogenous variables and ten independent shocks. Five
of the shocks arise from technology and preferences (εa

t , ε
i
t , ε

b
t , ε

n
t , ε

g
t ), which

are generated by first-order autoregressive processes, three are cost-push i.i.d.
shocks (ηw

t , ηp
t , η

Q
t ), and two are monetary shocks (π̄t and ηR

t ).

14.4.2 Empirical Results

The model is estimated using Bayesian procedures on quarterly data for the
period 1970.1–1999.4 for seven euro area macroeconomic variables: GDP, con-
sumption, investment, employment, the GDP deflator, real wages, and the nom-
inal interest rate. It is assumed that neither capital nor the rental rate of capital
are observed. By using Bayesian methods it is possible to combine key cal-
ibrated parameters with sample information. Rather than evaluate the DGE
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model based only on its sample moment statistics, impulse response functions
are also used. The moments and the impulse response functions for the esti-
mated DGE model are based on the median of ten thousand simulations of
the estimated model. A third-order VAR is fitted to the original data and is
used to provide the impulse response functions for the original data. We now
summarize the main findings.

Comparing the auto-covariances of the VAR and the simulated DGE model,
those from the VAR are generally quite close to those of the DGE model: the
VAR auto-covariances lie within the confidence bands of those for the DGE
model; the bands are, however, quite wide, indicating parameter uncertainty.
The main discrepancy concerns the auto-covariances between output and the
expected real interest rate. These are higher in the VAR, but the differences are
not significant.

Turning to the impulse response functions for the DGE model, first we con-
sider the responses to a positive productivity shock, εa

t . This causes output,
consumption, and investment to rise, but employment and the utilization of
capital to fall. The real wage also rises, but only gradually. The fall in employ-
ment is consistent with evidence on the impulse responses to U.S. productivity
shocks, but is in contrast to the predictions of the standard RBC model without
nominal rigidities. A possible explanation is that, due to the rise in productiv-
ity, marginal cost falls on impact and, as monetary policy does not respond
strongly enough to offset this fall, inflation declines gradually. The estimated
reaction of monetary policy to a productivity shock is comparable with results
for the United States.

A positive labor-supply shock has a similar effect on output, inflation, and
the interest rate to a positive productivity shock. Due to the strong persistence
of the labor-supply shock, the real interest rate is not greatly affected. The main
differences are that employment also rises in line with output and that the real
wage falls significantly. This fall in the real wage leads to a fall in marginal
cost and in inflation. A negative wage-markup shock has similar effects, except
that the real interest rate rises, and real wages and marginal costs fall more on
impact. The effects of a negative price-markup shock on output, inflation, and
interest rates are also similar, but the effects on real marginal cost, real wages,
and the rental rate of capital are opposite in sign.

Positive demand shocks generally cause real interest rates to rise. A posi-
tive preference shock, while increasing consumption and output, crowds out
investment. The increase in capacity necessary to satisfy increased demand is
delivered by an increase in the utilization of installed capital and an increase
in employment. Increased consumption demand puts pressure on the prices of
the factors of production, and both the rental rate on capital and the real wage
rise, thereby putting upward pressure on marginal cost and inflation.

A positive government expenditure shock raises output initially but crowds
out consumption, which, due to increases in the marginal utility of working,
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leads to a greater willingness of households to work. As a result, the effects on
real wages, marginal costs, and prices are small.

A negative monetary-policy shock (increase in the interest rate shock ηR
t ) has

temporary effects on all variables apart from the price level, which falls perma-
nently. For the first few periods, nominal and real short-term interest rates rise,
and output, consumption, investment, and real wages fall. The maximum effect
on investment is about three times as large as that on consumption. Overall,
these effects are consistent with other evidence on the euro area, though the
price effects in the model are somewhat larger than those estimated in some
identified VARs.

A permanent increase in target inflation (π̄t) does not have a strong effect
on output, consumption, employment, the real wage, or the real interest rate,
although all rise quickly. It has a larger effect on investment and, of course,
causes the price level to rise permanently.

The contribution of each of the structural shocks to variations in the endoge-
nous variables may be obtained from the forecast error variances at various
horizons. At the one-year horizon, output variations are driven primarily by
the preference shock and the monetary-policy shock. In the medium term, both
of these shocks continue to dominate, but the two supply shocks (productiv-
ity and labor supply) account for about 20% of the forecast error variance. In
the long run, the labor-supply shock dominates, but the monetary-policy shock
still accounts for about a quarter of the forecast error in output. The monetary-
policy shock is transmitted mainly through investment. The price- and wage-
markup shocks make little contribution to output variability. Taken together,
the two supply shocks, the productivity and the labor shock, account for only
37% of the long-run forecast error variance of output, which is less than is
found in most VAR studies. The limited importance of productivity shocks,
which explain a maximum of 12% of the forecast error variance of output, is
probably due to the negative correlation between output and employment.

In the short run, variations in inflation are mainly driven by price-markup
shocks. This appears to be a very sluggish process, with inflation only gradually
responding to current and expected changes in marginal cost. In the medium
and long run, preference shocks and labor-supply shocks account for about
20% of the variation in inflation, whereas monetary-policy shocks account for
about 15%.

In summary, in this study by Smets and Wouters three structural shocks
explain a significant fraction of variations in output, inflation, and interest rates
at the medium- to long-term horizon: these are the preference shock, the labor-
supply shock, and the monetary-policy shock. In addition, the price-markup
shock is an important determinant of inflation, but not of output, while the pro-
ductivity shock determines about 10% of output variations but does not affect
inflation. Smets and Wouters do not report corresponding results for govern-
ment expenditure shocks, though these shocks appear to have a strong tem-
porary effect on output. This supports our earlier conclusion that RBC models,
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with their focus on productivity shocks, do not give an adequate representation
of the economy, or even of output, and that the effects of monetary and, pos-
sibly, fiscal policy should also be represented in a DGE macroeconomic model
together with labor-supply effects.

14.5 Conclusions

Our main purpose in seeking empirical evidence on DGE models is to improve
the underlying macroeconomic theory, and hence our knowledge of the econ-
omy. This is one of the main attractions of the form of analysis discussed in this
chapter. We have argued that any shortcomings in the ability of our DGE model
to account for observed data should be addressed by rethinking the theory
rather than by propping up the model with, for example, additional dynamic
terms. A frequent weakness of time-series econometrics is that it is too con-
cerned with obtaining models with acceptable statistical properties, and too
little concerned with contributing to better macroeconomic theory. The unfor-
tunate consequence is that increasingly macroeconomists have ignored empiri-
cal evidence on their models and, where they have used data, they have adopted
poor statistical practices. The challenge for econometrics is to retain its rele-
vance to macroeconomic theory; the challenge for macroeconomic theory is to
bring evidence to bear in a way that is consistent with the principles of statistical
inference without compromising its general equilibrium agenda.

In this final chapter we have selected a small number of key articles for a close
scrutiny of their empirical properties. These covered RBC models for closed
and open economies and a DGE model of the monetary economy. The princi-
pal findings are that although fluctuations in output (i.e., business cycles) are
affected by productivity shocks, other shocks also affect output: notably, mon-
etary shocks. There is also evidence of the importance of preference and labor-
supply shocks. Inflation seems to be driven both by monetary shocks and by
price-markup shocks, but the response is sluggish. This supports the arguments
made earlier concerning the inflexibility of prices and the role of monopolistic
competition in causing this inflexibility. Imperfectly flexible prices also affect
the dynamic adjustment of real variables.

The more complex the model, the greater the reliance on numerical pro-
cedures to analyze the dynamic response of the model to shocks and policy
changes. However, even for complex models it is often relatively straightfor-
ward to derive their long-run general equilibrium properties analytically. And
by carefully simplifying the DGE model, it is often also possible to derive
their short-run properties analytically. Taken together, this may provide a close
approximation to how the economy behaves.
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Mathematical Appendix

15.1 Introduction

In this appendix, for easy reference, we explain the mathematical methods that
we use in our macroeconomic analysis. As far as possible, discussion will be
brief and to the point, and the derivations are heuristic rather than rigorous.
For a more detailed and rigorous analysis of the issues the reader is referred to
the mathematical literature: see, for example, Intriligator (1971), Leonard and
Long (1992), Dixit (1990), and Chow (1997). As the macroeconomic models in
this book are specified in discrete time, we focus throughout almost entirely on
discrete-time methods. First, we consider dynamic optimization, and then we
discuss solution methods for linear rational-expectations models.

15.2 Dynamic Optimization

The generic mathematical problem in intertemporal macroeconomics is to max-
imize an objective function defined over multiple periods subject to constraints,
at least one of which is dynamic, and to given boundary conditions. This may
be called intertemporal or, more commonly, dynamic optimization. Often the
objective function is a present-value relation defined in terms of the choice or
control variables and other noncontrollable variables, and the dynamic con-
straint describes a dynamic relation between these variables. The problem may
have an infinite or a finite horizon, and there may be a constraint on the out-
come in the last period of the finite horizon, or at the start. Such boundary con-
ditions may be exogenously given, or be choice variables. The problem may be
nonstochastic, implying perfect foresight, or stochastic, implying uncertainty
about future outcomes. And it may be defined in continuous or discrete time.
We focus mainly on nonstochastic dynamic optimization in discrete time with
an infinite horizon, but we also consider the case of continuous time, stochastic
optimization, and a finite horizon.

Dynamic optimization may be carried out in several ways: by the use of
Lagrange multipliers, the calculus of variations, the maximum principle, or
dynamic programming. The choice of method will depend in part on the partic-
ular problem. Whichever feasible optimization method is chosen, the solution
will be the same.
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The general nonstochastic discrete-time intertemporal problem takes the
form: choose {xt, zt ; t = 0,1, . . . , T} to maximize the concave scalar objective
function

V(x0, x1, . . . , xT ;z0, z1, . . . , zT )

subject to the N × 1 vector of constraints F , where the ith constraint is

Fi(x0, x1, . . . , xT ;z0, z1, . . . , zT ) � 0, i = 1, . . . , N,

xt is an n × 1 vector of state variables, and zt is an m × 1 vector of control
variables. The control variables are the instruments (under the control of the
optimizer) and the state variables are related to the instruments through the
constraints. Without specifying them precisely, we assume that appropriate reg-
ularity conditions are satisfied so that an interior solution exists. For example,
we assume throughout that whatever functional form V takes, it exists over
the domain under consideration and has at least continuous first- and second-
order derivatives. We also assume that F is differentiable. This problem may be
solved using the method of Lagrange multipliers or, for particular functional
forms, using other methods.

A particular case of the general problem commonly occurs in intertemporal
macroeconomics. The function V is often additively separable over time so that

V(x0, x1, . . . , xT ;z0, z1, . . . , zT ) = U(x0, z0)+ βU(x1, z1)+ · · · + βTU(xT , zT )

=
T∑
t=0

βtU(xt, zt),

where 0 < β � 1 has the interpretation of a discount factor; β = 0 would imply
static optimization. V then has the interpretation of a present-value function.
If we also define

V ≡ V0 =
T∑
t=0

βtU(xt, zt),

V1 =
T∑
t=1

βtU(xt, zt),

then we can rewrite V as the recursion

V0 = U(x0, z0)+ βV1.

In other words, V can be derived by successive substitution for V1, V2, etc.
Typically, at least one of the constraints takes the form of a difference equation
such as

xt+1 = f(xt, zt), t = 0, . . . , T ,

which provides T + 1 constraints, one for each period, and optimization takes
place with respect to {xt, zt ; t = 0,1, . . . , T}.
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Implicitly, it has been assumed that the future values of state variables are
known. In practice this will not usually be the situation. As a result, intertem-
poral problems in economics and finance often take the form: maximize

Et[V(xt)] = U(zt)+ βEt[V(xt+1)]

subject to a dynamic constraint, where Et[·] denotes the expectation condi-
tional on information available up to and including period t. This reflects the
fact thatxt and zt may be stochastic variables whose future values are unknown
at time t and so must be forecast from current information. This problem is
called stochastic dynamic programming. The Lagrange multiplier technique can
be used for this problem, but has major drawbacks.

The optimal solutions to these problems are defined over the entire planning
horizon. This raises the question of whether it is best to carry out the entire plan
as initially conceived or to reoptimize at some point in the future and abandon
the initial plan. The plan could even be reoptimized each period, so that only
the first period is ever implemented. The notion that it is optimal to reoptimize
a dynamic program in this way is called the problem of time inconsistency. The
inconsistency is that the plan announced for the given time horizon is replaced
by a new plan. One reason why reoptimization may be optimal is the later arrival
of new information about the future. A more common argument in economics
relates to the fact that decisions are often decentralized so that the optimality
of one person’s decision depends on the expected decisions of others.

15.3 The Method of Lagrange Multipliers

15.3.1 Equality Constraints

To illustrate the method of Lagrange multipliers consider the static optimiza-
tion problem: maximize V(x, z) subject to the constraint

f(x, z) = c,

where x and z are nonnegative scalars and c is a constant. The problem is
depicted in figure 15.1. All values on the line V(x, z) give the same value of V ,
and V increases in the direction of the arrow.

(i) Graphical Solution. The constraint is a given line in {x, z}-space; the aim
is to choose the maximum value of the function V(x, z) that satisfies the con-
straint. This occurs at the point of tangency of V with that of the constraint.
At this point the slopes of the tangents are the same. The solutions for x and
z can be obtained by solving the equations for these slopes simultaneously.

(ii) Substitution. Assuming that the constraint holds exactly and that we can
write the constraint as x = g(z), we can eliminate x to give V[g(z), z]. Hence
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x

z

f  (x,z) = c

V(x,z)

Figure 15.1. Constrained optimization.

the first-order condition for a maximum is

dV
dz

= ∂V
∂g
∂g
∂z

+ ∂V
∂z

= ∂V
∂x
∂x
∂z

+ ∂V
∂z

= 0.

This can be solved for z, and x can then be obtained from the constraint. More
generally, we note that the slope of the tangent to the constraint is

dx
dz

= − ∂f/∂z
∂f/∂x

.

(iii) Lagrange Multipliers. Define the function (called the Lagrangian)

L(x, z, λ) = V(x, z)+ λ[c − f(x, z)],
where λ is called the Lagrange multiplier. Now maximize L with respect to x,
z, and λ. The first-order conditions are

∂L
∂x

= ∂V
∂x

− λ∂f
∂x

= 0, (15.1)

∂L
∂z

= ∂V
∂z

− λ∂f
∂z

= 0, (15.2)

∂L
∂λ

= f(x, z)− c = 0. (15.3)

From equation (15.1), λ = (∂V/∂x)/(∂f/∂x). Substituting this into equa-
tion (15.2) gives

∂V
∂z

− ∂V/∂x
∂f/∂x

∂f
∂z

= ∂V
∂z

− ∂V
∂x
∂f/∂z
∂f/∂x

= ∂V
∂z

+ ∂V
∂x
∂x
∂z

= 0;

the same as the solution obtained by substitution.

We can give the following interpretation of Lagrange multipliers. The optimal
solutions can be written x∗ = x∗(c), z∗ = z∗(c), λ∗ = λ∗(c), as they are
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functions of c, and the maximized value of V can be written V∗(c) = V[x∗, z∗].
Hence the Lagrangian function at the optimum can be written

L∗(c) = V∗(c)+ λ∗(c){c − f∗[x∗(c), z∗(c)]}.
It follows that

∂L∗(c)
∂c

= ∂V
∗(c)
∂x∗

∂x∗

∂c
+ ∂V

∗(c)
∂z∗

∂z∗

∂c
+ ∂λ

∗(c)
∂c

{c − f∗[x∗(c), z∗(c)]}

+ λ∗(c)
(

1− ∂f
∗

∂x∗
∂x∗

∂c
− ∂f

∗

∂z∗
∂z∗

∂c

)

=
[
∂V∗(c)
∂x∗

− λ∗(c)∂f
∗

∂x∗

]
∂x∗

∂c
+
[
∂V∗(c)
∂z∗

− λ∗(c)∂f
∗

∂z∗

]
∂z∗

∂c

+ ∂λ
∗(c)
∂c

{c − f∗[x∗(c), z∗(c)]} + λ∗(c)
= λ∗(c)

where we have used the fact that, from the previous first-order conditions,

∂V∗

∂x∗
− λ∗ ∂f

∗

∂x∗
= ∂V

∗

∂z∗
− λ∗ ∂f

∗

∂z∗
= 0

and that from the constraint, c − f∗(x∗, z∗) = 0. Hence,

∂L∗(c)
∂c

= ∂V
∗(c)
∂c

= λ∗(c).

The Lagrange multiplier can therefore be interpreted as the change in V∗, the
maximized value of V , of a unit change in the constraint c.

If the constraint is not binding, then a small change in the constraint would
have no effect on V∗. In this case λ = 0. It is only when the constraint is binding
that λ ≠ 0 and an easing or tightening of the constraint would affect V∗.

Example 15.1. Minimize V = x2 + cz2 subject to the constraint x = a+ bz.

(i) The substitution method:

V = (a+ bz)2 + cz2,
∂V
∂z

= 2b(a+ bz)+ 2cz = 0,

z = − ab
b2 + c .

(ii) Lagrange multipliers:

L = x2 + cz2 + λ(a+ bz − x),
∂V
∂x

= 2x − λ = 0,

∂V
∂z

= 2cz + λb = 0,

z = −b
c
x = −b

c
(a+ bz) = − ab

b2 + c .
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Applying the method of Lagrange multipliers to the general problem we
define the Lagrangian as

L = V(x0, x1, . . . , xT ;z0, z1, . . . , zT )+ λ′F(x0, x1, . . . , xT ;z0, z1, . . . , zT ),

where λ is an N × 1 vector of Lagrange multipliers. The first-order conditions
for t = 0, . . . , T are

∂L
∂xt

= ∂V
∂xt

+ ∂F
∂xt

λ = 0,

∂L
∂z

= ∂V
∂zt

+ ∂F
∂zt
λ = 0,

∂L
∂λ

= F(x0, x1, . . . , xT ;z0, z1, . . . , zT ) = 0.

In principle these equations can be solved for x0, x1, . . . , xT , z0, z1, . . . , zT ,
and λ.

Finally, consider the special case where V is a present value and the con-
straints are given by the difference equation. The Lagrangian can be written
as

L =
T∑
t=0

βtU(xt, zt)+ λ1[f (x0, z0)− x1]

+ λ2[f (x1, z1)− x2]+ · · · + λT [f(xT , zT )− xT+1]

=
T∑
t=0

{βtU(xt, zt)+ λt[f (xt, zt)− xt+1]}

=
T∑
t=0

H(xt, zt, λt),

where
H(xt, zt, λt) = βtU(xt, zt)+ λt[f (xt, zt)− xt+1].

As there are T +1 constraints, the problem requires T +1 Lagrange multipliers.
We note that time T+1 variables, notably xT+1, are present in the optimand but
optimization is assumed to take place only for periods 0,1, . . . , T . The impli-
cation is that xT+1 must be prespecified. We also assume that, being a state
variable, x0 is given. The first-order conditions are

∂L
∂xt

= ∂H(xt, zt, λt)
∂xt

= βt ∂U(xt, zt)
∂xt

+ λt ∂f(xt, zt)∂xt
− λt−1 = 0,

t = 1,2, . . . , T ,
∂L
∂zt

= ∂H(xt, zt, λt)
∂zt

= βt ∂U(xt, zt)
∂zt

+ λt ∂f(xt, zt)∂zt
= 0, t = 0, . . . , T ,

∂L
∂λt

= ∂H(xt, zt, λt)
∂λt

= f(xt, zt)− xt+1 = 0, t = 0, . . . , T .

We note that the first-order condition for ∂L/∂xt defines a set of difference
equations in λt . This is because xt appears in two constraints for each t. In
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principle, we can now solve for {xt, zt, λt ; t = 0, . . . , T} taking xT+1 and x0 as
given.

Example 15.2. Maximize

V =
T∑
t=0

βtU(ct), U ′ > 0, U ′′ < 0,

U(ct) = ln ct,

subject to
st+1 − st = α(st − ct), sT+1 = 0, 0 < a < 1, (15.4)

where β = 1/(1+θ) can be interpreted as a discount factor and θ is the implied
discount rate. The Lagrangian is

L =
T∑
t=0

{βt ln ct + λt[(1+α)st −αct − st+1]}.

The first-order conditions for t = 0, . . . , T are

∂L
∂ct

= βt 1
ct
−αλt = 0,

∂L
∂st

= (1+α)λt − λt−1 = 0.

Hence, λt = βt/(αct) and

ct+1 = (1+α)βct, (15.5)

= 1+α
1+ θ ct, (15.6)

implying that the growth rate of ct is positive or negative depending on whether
α ≷ θ.

The solution for st may be obtained by solving this simultaneously with the
constraint. It can be shown that the resulting solution of st can be written

st+2 − (1+α)(1+ β)st+1 + (1+α)2βst = 0. (15.7)

It is clear, therefore, that knowledge of sT+1 is not sufficient; we also need one
more piece of information. This could be knowledge either of one of the other
values of st , for example sT+2, sT , or s0, or of cT+1.

In intertemporal macroeconomics it is common for the dynamic solution to
be a saddlepath. This is characterized by having both stable and unstable roots
and has a solution that can be interpreted as a partial adjustment model with a
forward-looking long-run target. The condition that st has a saddlepath solution
is that the auxiliary equation satisfies

[1− (1+α)(1+ β)L+ (1+α)2βL2]L=1 < 0. (15.8)

This requires that α[(1+α)β− 1] < 0. If β = 1/(1+ θ), then for a saddlepath
solution we require that θ > α.
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If T →∞, then we can show that the constraint, equation (15.4), implies that

st = α
1+α

∞∑
i=0

(
1

1+α
)i
ct+i. (15.9)

From equation (15.5), ct+i = [(1+α)β]ict , hence substituting in (15.9) gives

ct = (1+α)(1− β)α
st. (15.10)

15.3.2 Inequality Constraints

Consider the following problem:

max
x
V(x) subject to f(x) � 0, x � 0,

where V(x) is a concave function, x is an n × 1 vector of variables and f is
a vector of k constraints, some of which are equality or binding constraints
and some of which are inequality constraints. The inequality constraints allow
for slack such as free disposable, where, for example, not all of the output
necessarily needs to be purchased. This is known as a nonlinear programming
problem.

The first-order conditions for this problem are a modification of those for
Lagrange multipliers and are called the Kuhn–Tucker conditions. In order to
state these, first we define the Lagrangian as

L(x, λ) = V(x)+ λ′f(x)

= V(x)+
k∑
i=1

λifi(x),

where λ is a k×1 vector of Lagrange multipliers and fi(x) is the ith constraint.
If {x∗, λ∗} is a solution to this problem, then the first-order conditions are

∂L(x∗, λ∗)
∂x∗

� 0, x∗ � 0, x∗′
∂L(x∗, λ∗)
∂x∗

= 0,

∂L(x∗, λ∗)
∂λ∗

� 0, λ∗ � 0, λ∗′
∂L(x∗, λ∗)
∂λ∗

= 0.

The condition ∂L(x∗, λ∗)/∂x∗ � 0 reflects the fact that any departure from
the unconstrained maximum due to the inequality constraints must be below
the unconstrained maximum. The condition x∗′(∂L(x∗, λ∗)/∂x∗) = 0 reflects
the fact that sign restrictions on the ith elements of x∗ and ∂L(x∗, λ∗)/∂x∗
may cause both to be nonnegative, but the product must be zero for each
i. For example, if x∗i > 0 then ∂L(x∗, λ∗)/∂x∗i = 0 (the usual case for
binding constraints), but if x∗i = 0 then ∂L(x∗, λ∗)/∂x∗i < 0. Similar argu-
ments apply to the conditions involving λ∗. We also note that the condi-
tion λ∗′(∂L(x∗, λ∗)/∂λ∗) = 0 holds when the constraint is nonbinding and
λ∗ = 0; in this case, ∂L(x∗, λ∗)/∂λ∗ may be positive. If λ∗ > 0, we have
∂L(x∗, λ∗)/∂λ∗ = 0.
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We note that this solution applies only in the precise conditions stated. If the
inequality constraints are different, then the problem must be reformulated as
above for these conditions to apply.

Example 15.3. Consider the following problem

max
x,z

V(x, z) subject to f(x, z) � c, x, z � 0.

The solution can be obtained by defining a new variable y such that

f(x, z)+y = c, x, z,y � 0.

We now maximize V(x, z) subject to x, z, and y and the new equality
constraint. The Lagrangian is

L∗(x, z,y, λ) = V(x, z)+ λ[c − f(x, z)−y]
= L− λy,

where the usual Lagrangian is

L(x, z, λ) = V(x, z)+ λ[c − f(x, z)].
The Kuhn–Tucker first-order conditions are

∂L∗
∂x

= ∂V
∂x

− λ∂f
∂x

= ∂L
∂x

� 0,

∂L∗
∂z

= ∂V
∂z

− λ∂f
∂z

= ∂L
∂z

� 0,

∂L∗
∂y

= −λ � 0,

∂L∗
∂λ

= ∂L
∂λ

−y � 0

= c − f(x, z)−y = 0.

The last equation follows from the fact that the inequality constraint has been
converted into an equality constraint. Eliminating y gives

∂V
∂x

− λ∂f
∂x

� 0,

∂V
∂z

− λ∂f
∂z

� 0,

c − f(x, z) � 0,
x, z, λ � 0.

15.4 Continuous-Time Optimization

We can compare the method of Lagrange multipliers in discrete time with two
standard continuous-time methods: the “calculus of variations” and the “maxi-
mum principle.” As we do not use continuous-time optimization in this book, we
sketch only sufficient details for the comparison to be made (see, for example,
Intriligator (1971) for more details).
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15.4.1 Calculus of Variations

The calculus of variations is concerned with choosing a path for y(t) that
maximizes ∫ T

0
f[y(t), ẏ(t), t]dt,

where ẏ(t) = dy/dt and y(t)may be a vector. We note that not all elements of
ẏ(t) may be present in f[y(t), ẏ(t), t] and there may be constraints on y(0)
and y(T). The first-order conditions are

∂f(t)
∂y(t)

− d
dt

(
∂f(t)
∂ẏ(t)

)
= 0.

These are called the Euler equations.

Example 15.4. Consider a continuous-time version of example 15.2 with an
infinite horizon in which the objective function is

V =
∫∞

0
e−θt ln ct,

where the constraint is the differential equation

ṡ(t) = α[s(t)− c(t)].
Replacing ṡ(t) by ∆st+1 gives the previous difference equation.

Let y(t) = {s(t), c(t), λ(t)} and let

f[y(t), ẏ(t), t] = e−θt ln c(t)+ λ(t)[α(s(t)− c(t))− ṡ(t)].
Applying the calculus of variations gives the Euler equations

∂f
∂s
− d

dt

(
∂f
∂ṡ

)
= αλ+ λ̇ = 0,

∂f
∂c

= e−θt
1
c
−αλ = 0,

∂f
∂λ

= α(s − c)− ṡ = 0.

It follows that λ = e−θt/αc and λ̇ = −λ((ċ/c) + θ); hence the first condition
implies that

ċ
c
= α− θ.

This and the constraint form a differential equation system that can be solved
for xt and z.

Comparing this solution with the discrete-time solution we note that the
discrete-time solution can be written

ct+1 − ct
ct

= 1+α
1+ θ − 1

� α− θ.
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15.4.2 The Maximum Principle

The maximum principle is concerned with choosing {x(t), z(t)} to maximize∫ T
0 f[x(t), z(t), t]dt subject to the constraint

ẋ(t)
(
= dx(t)

dt

)
= g[x(t), z(t), t]

and possible constraints at t = 0 and t = T . First we define the function (called
the Hamiltonian)

h[x(t), z(t), λ(t)] = f[x(t), z(t), t]+ λ(t)g[x(t), z(t), t].
The first-order conditions are

∂h
∂x

= −λ̇,
∂h
∂z

= 0,

∂h
∂λ

= ẋ.
Example 15.5. Consider example 15.3 once more. We now define

h[x(t), z(t), λ(t)] = e−θt ln c(t)+ λ(t)α[s(t)− c(t)].
The first-order conditions are

∂h
∂s

= αλ = −λ̇,
∂h
∂c

= e−θt
1
c
−αλ = 0,

∂h
∂λ

= α(s − c) = ṡ.
These first-order conditions are identical to those obtained from the calculus
of variations.

15.5 Dynamic Programming

When the intertemporal problem in discrete time has a time-separable objective
function that can be represented as a recursive structure, it can be solved using
the “principle of optimality” due to Bellman (1957). This method is also known
as dynamic programming.

The basic idea of the principle of optimality is to solve the optimization
period by period—starting with the final period, taking the previous periods’
solutions as given, and then working back sequentially to the first period. Hav-
ing optimized the final period, period T say, this solution is substituted into
the period T − 1 problem and then period T − 1 is optimized. Substituting the
previous solutions, the solutions for periods T − 2, T − 3, . . . ,0 are obtained in
sequence in the same way.
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Suppose that the problem is to maximize

V(xt) = U(xt, zt)+ βV(xt+1) (15.11)

for t, t + 1, . . . , T subject to

xt+1 = f(xt, zt) (15.12)

and toxT+1 = x. zt is called the control variable in the optimal control literature
and xt is called the state variable.

Consider the problem for period T . First we maximize

V(xT ) = U(xT , zT )+ βV(xT+1) (15.13)

with respect to zT subject to xT+1 = f(xT , zT ) and taking xT as given. Thus we
maximize

V(xT ) = U(xT , zT )+ βV[f(xT , zT )]. (15.14)

The first-order condition is

∂V(xT )
∂zT

= ∂U(xT , zT )
∂zT

+ β∂VT+1[f (xT , zT )]
∂zT

= 0. (15.15)

The solution for zT has the form

zT = gT (xT ). (15.16)

Strictly speaking we should write zT = gT (xT ,x) but we omitx for convenience.
Substituting this solution for zT into V(xT ) gives

V(xT ) = U(xT , zT )+ βV[f(xT , zT )]
= U{f(xT−1, zT−1), gT [f (xT−1, zT−1)]}

+ βV{f[f(xT−1, zT−1)], gT [f (xT−1, zT−1)]}
= VT (xT−1, zT−1). (15.17)

Turning next to period T − 1, we maximize

V(xT−1) = U(xT−1, zT−1)+ βV(xT ) (15.18)

with respect to zT−1 subject to xT = f(xT−1, zT−1), taking xT−1 as given. The
first-order condition is

∂V(xT−1)
∂zT−1

= ∂U(xT−1, zT−1)
∂zT−1

+ β∂VT (xT−1, zT−1)
∂zT−1

= 0. (15.19)

We write the solution for zT−1 as

zT−1 = gT−1(xT−1). (15.20)

Substituting this solution into V(xT−1) gives

V(xT−1) = U[xT−1, gT−1(xT−1)]+ βVT [xT−1, gT−1(xT−1)] (15.21)

= VT−1(xT−2, zT−2). (15.22)
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We proceed similarly in periods T − 2, T − 3, . . . ,0.
The general solution for period t has the first-order condition

∂V(xt)
∂zt

= ∂U(xt, zt)
∂zt

+ β∂Vt+1(xt, zt)
∂zt

= 0 (15.23)

and the solution
zt = gt(xt). (15.24)

The solution given by equation (15.24) is known in the optimal control litera-
ture as a closed-loop solution because the optimal value of the control variable zt
during period t is given as a function of the state variable xt at the start of that
period. This is in contrast to open-loop control, in which the solution is given as
a function of time only. Typically, dynamic programming provides a closed-loop
solution whereas the maximum principle gives an open-loop solution.

In the case where T → ∞ we can also derive the solution given by equa-
tion (15.24) by noting that

∂Vt+1(xt, zt)
∂zt

= ∂V(xt+1, zt+1)
∂zt+1

∂zt+1

∂zt
,

where
∂zt+1

∂zt
= ∂zt+1

∂xt+1

∂xt+1

∂zt
is obtained directly from the constraint, equation (15.12), or by expressing the
constraint as the two-period intertemporal constraint

xt+2 = f(xt+1, zt+1)

= f[f(xt, zt), zt+1]

= h(xt, zt, zt+1).

Taking the total differential of xt+2 − h(xt, zt, zt+1) = 0, and taking xt+2 and
xt as given, yields

∂zt+1

∂zt
= − ∂h/∂zt

∂h/∂zt+1
.

Hence

∂V(xt)
∂zt

= ∂U(xt, zt)
∂zt

+ β∂V(xt+1, zt+1)
∂zt+1

∂zt+1

∂xt+1

∂xt+1

∂zt
= 0 (15.25)

or

∂V(xt)
∂zt

= ∂U(xt, zt)
∂zt

− β∂V(xt+1, zt+1)
∂zt+1

∂zt+1

∂h
∂h
∂zt

= 0. (15.26)

Example 15.6. Reconsider example 15.2. This can be rewritten as: maximize

V0 =
T∑
t=0

βtU(ct), U(ct) = ln ct

= ln c0 + βV1
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subject to
st+1 = (1+α)st −αct, sT+1 = 0, 0 < a < 1,

with respect to st and ct for periods t = 0,1, . . . , T . Compared with the general
problem we note that xt ≡ st and zt ≡ ct .

First we consider the solution for period T . This requires us to maximize

V(sT ) = U(cT )+ βV(sT+1)

with respect to cT subject to sT+1 = (1+α)sT −αcT and sT+1 = 0, taking sT as
given. Thus we maximize V(sT ) = U(cT ). On this occasion no maximization is
required. The solution is obtained from the constraint as

cT = (1+α)sTα
;

hence

V(sT ) = ln
[
(1+α)sT

α

]
+ βV(0).

The period T − 1 problem is to maximize

V(sT−1) = ln cT−1 + βV(sT )

= ln cT−1 + β ln
[
(1+α)sT

α
+ βV(0)

]

with respect to cT−1 subject to sT = (1+α)sT−1 −αcT−1, taking sT−1 as given.
The first-order condition is

∂V(sT−1)
∂cT−1

= 1
cT−1

− β α
(1+α)sT−1 −αcT−1

= 0.

Hence,

cT−1 = 1+α
α(1+ β)sT−1

and so

V(sT−1) = ln
[

1+α
α(1+ β)sT−1

]
+ β ln

[
(1+α)2β
α(1+ β) sT−1

]
.

Similarly, the period T − 2 problem is to maximize

V(sT−2) = ln cT−2 + βV(sT−1)

= ln cT−2 + β ln
[

1+α
α(1+ β)sT−1

]
+ β2 ln

[
(1+α)2β
α(1+ β) sT−1

]

with respect to cT−2 subject to sT−1 = (1+α)sT−2−αcT−2, taking sT−2 as given.
The first-order condition is

∂V(sT−2)
∂cT−2

= 1
cT−2

− (β+ β2)
α

(1+α)sT−2 −αcT−2
= 0.

Hence,

cT−2 = 1+α
α(1+ β+ β2)

sT−2.
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It is now clear that the general solution for periods t = 0, . . . , T takes the form

ct = 1+α
α(1+ β+ · · · + βT−t)st

= (1+α)(1− β)
α(1− βT−t+1)

st.

We note that as T →∞ this becomes

ct = (1+α)(1− β)α
st,

which is identical to the corresponding solution based on Lagrange multipliers,
equation (15.10).

We also note that in this case we can obtain the solution using equa-
tion (15.25). This gives

∂V(st)
∂ct

= ∂ ln ct
∂ct

+ β∂ ln ct+1

∂ct+1

∂ct+1

∂st+1

∂st+1

∂ct

= 1
ct
+ β 1

ct+1

1+α
α

(−α) = 0. (15.27)

This implies that

ct+1 = (1+α)βct, (15.28)

which is the same solution that was derived using Lagrange multipliers in
equation (15.5).

15.6 Stochastic Dynamic Optimization

Intertemporal problems in economics and finance often take the form of
maximizing the expected present value

Et[V(xt)] = Et
[ ∞∑
s=0

βsU(zt+s)
]

(15.29)

subject to the constraint

xt+1 = f(xt, zt), (15.30)

where Et[·] denotes the expectation conditional on information available up to
and including period t. This reflects the fact that xt and zt may be stochastic
variables whose future values are unknown at time t and so must be forecast
from current information. Previously, we have implicitly assumed that future
values are known, i.e., that we have perfect foresight.

The stochastic problem can be solved using the method of Lagrange multi-
pliers, but there is a problem with this solution. We can write the Lagrangian
as

L = Et
∞∑
s=0

{βsU(zt+s)+ λt+s[f (xt+s , zt+s)− xt+s+1]}.
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The first-order conditions are

∂L
∂xt+s

= Et
{
λt+s

∂f (xt+s , zt+s)
∂xt+s

− λt+s−1

}
= 0, s > 0,

∂L
∂zt+s

= Et
{
βs
∂U(zt+s)
∂zt+s

+ λt+s ∂f (xt+s , zt+s)∂zt+s

}
= 0, s � 0,

∂L
∂λt+s

= Et[f (xt+s , zt+s)− xt+s+1] = 0, s � 0.

Unless the conditional covariance is zero, in solving these equations for the
optimal values we encounter the term

Et
[
λt+s

∂f (xt+s , zt+s)
∂zt+s

]

= Covt

[
λt+s ,

∂f (xt+s , zt+s)
∂zt+s

]
+ Et[λt+s]Et

[
∂f(xt+s , zt+s)

∂xt+s

]

≠ Et[λt+s]Et
[
∂f(xt+s , zt+s)

∂xt+s

]
,

which implies that λt+s and ∂f(xt+s , zt+s)/∂zt+s are conditionally uncorrelated.
As a result, we are unable to eliminate λt+s in the way that we did before.

Instead of using Lagrange multipliers we therefore use the method of
dynamic programming. This entails writing the present-value relation as the
recursion (also known as the Bellman equation)

Et[V(xt)] = U(zt)+ βEt[V(xt+1)] (15.31)

and maximizing this directly subject to the constraint, equation (15.30).
In view of example 15.6 and, in particular, equation (15.27), we obtain the

first-order condition

Et
[
∂V(xt)
∂zt

]
= ∂U(zt)

∂zt
+ βEt

[
∂V(xt+1)
∂zt+1

∂zt+1

∂xt+1

∂xt+1

∂zt

]
= 0. (15.32)

Hence

∂V(xt+1)
∂zt+1

= ∂U(zt+1)
∂zt+1

,

∂zt+1

∂xt+1
= −∂ft+1/∂xt+1

∂ft+1/∂zt+1
,

∂xt+1

∂zt
= ∂ft
∂zt
,

where the last two derivatives are obtained from the constraint, equation
(15.30). Consequently, the solution satisfies

∂U(zt)
∂zt

− βEt
[
∂U(zt+1)
∂zt+1

∂ft+1/∂xt+1

∂ft+1/∂zt+1

∂ft
∂zt

]
= 0. (15.33)

The optimal solutions can be obtained from equations (15.33) and (15.30).
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Example 15.7. Consider a stochastic version of example 15.6. We rewrite this
as

max Et[V(st)] = U(ct)+ βEt[V(st+1)], U(ct) = ln ct,

subject to
st+1 = (1+α)st −αct, sT+1 = 0, 0 < a < 1.

The first-order condition is

Et
[
∂V(st)
∂ct

]
= ∂ ln ct

∂ct
+ βEt

[
∂ ln ct+1

∂ct+1

∂ct+1

∂st+1

∂st+1

∂ct

]

= 1
ct
− βEt

[
1+α
ct+1

]
= 0.

It follows that
1
ct
= β(1+α)Et

[
1
ct+1

]
.

As Et[ct+1] ≠ 1/(Et[ct+1]), we cannot obtain the solution from that of exam-
ple 15.6 by simply replacing ct+1 in equation (15.28) by Et[ct+1], i.e., by invok-
ing the certainty equivalence principle. A second-order Taylor series expansion
about ct gives

Et
[

1
ct+1

]
� 1
ct
− 1
ct
Et
[
∆ct+1

ct

]
+ 1
ct
Et
[(
∆ct+1

ct

)2]
;

hence,

Et
[
∆ct+1

ct

]
= [β(1+α)− 1]+ Et

[(
∆ct+1

ct

)2]
.

Hence, compared with equation (15.28) there is an extra term in the implied
optimal rate of growth of ct .

15.7 Time Consistency and Time Inconsistency

Time inconsistency may arise in multiperiod optimization problems. Having
formulated the optimal plan for the current period and for future time peri-
ods, next period it may prove better to reoptimize and carry out the new plan
rather than the earlier plan. This is called time inconsistency. In contrast, a
time-consistent policy is one that retains its optimality in the future. The ensu-
ing discussion of time-consistent and time-inconsistent policies is based on the
seminal paper by Kydland and Prescott (1977).

Consider the following two-period problem for periods t and t + 1. Suppose
that in period t social welfare is defined by

Vt = V(xt, xt+1, zt, zt+1), (15.34)

where zt and zt+1 are the values of the single policy instrument in periods t
and t + 1, and xt and xt+1 satisfy the constraints

xt = C(xt−1, zt, zt+1), (15.35)

xt+1 = C(xt, zt, zt+1), (15.36)
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with xt−1 given at time t. We note that the period t constraint is forward looking
due to the presence of zt+1. The problem is to choose zt and zt+1 to maximize
Vt . An example of Vt is the time-separable function

Vt = U(xt, zt)+ βU(xt+1, zt+1). (15.37)

At time t the policy maker can choose zt and zt+1 to satisfy the first-order
conditions

∂Vt
∂zt

= ∂V
∂zt

+ ∂V
∂xt+1

[
∂xt+1

∂zt
+ ∂xt+1

∂xt
∂xt
∂zt

]
+ ∂V
∂xt

∂xt
∂zt

= 0,

∂Vt
∂zt+1

= ∂V
∂zt+1

+ ∂V
∂xt+1

[
∂xt+1

∂zt+1
+ ∂xt+1

∂xt
∂xt
∂zt+1

]
+ ∂V
∂xt

∂xt
∂zt+1

= 0.

These can be rewritten as

∂V
∂zt

+ ∂V
∂xt+1

∂xt+1

∂zt
+
[
∂V
∂xt

+ ∂V
∂xt+1

∂xt+1

∂xt

]
∂xt
∂zt

= 0, (15.38)

∂V
∂zt+1

+ ∂V
∂xt+1

∂xt+1

∂zt+1
+
[
∂V
∂xt

+ ∂V
∂xt+1

∂xt+1

∂xt

]
∂xt
∂zt+1

= 0. (15.39)

The optimal values of xt , xt+1, zt , and zt+1 can be solved from these two
conditions together with the two constraints and the given value of xt−1.

At time t + 1 the policy maker is able to reoptimize the choice of zt+1, but
must now take xt and zt as given. This value of xt will depend on the choice
of zt+1 made in period t. The first-order condition with respect to zt+1 is now

∂V
∂zt+1

+ ∂V
∂xt+1

∂xt+1

∂zt+1
= 0. (15.40)

This can be solved for xt+1 and zt+1 for given values of xt and zt . We denote the
new solutions by x∗t+1 and z∗t+1. If the policy is time consistent, then zt+1 = z∗t+1,
and hence xt+1 = x∗t+1. But if it is time inconsistent, then zt+1 ≠ z∗t+1, and hence
xt+1 ≠ x∗t+1.

In order for the solution to be time consistent, i.e., for equations (15.39)
and (15.40) to be the same, it is necessary that either

∂xt
∂zt+1

= 0,

i.e., xt is unaffected by the choice of zt+1, or

∂V
∂xt

+ ∂V
∂xt+1

∂xt+1

∂xt
= 0,

i.e., the total effect of xt on V is zero. As the latter is less plausible, we conclude
that time inconsistency is most likely to arise when expectations of the future
choice of zt+1 affect the current choice of xt .

Example 15.8. Consider the problem

maxVt = U(xt, zt)+U(xt+1, zt+1),

U(xt, zt) = −1
2[x

2
t + γz2

t ],



�

�

“wickens” — 2007/10/15 — 13:08 — page 445 — #463
�

�

�

�

�

�

15.8. The Linear Rational-Expectations Models 445

subject to

xt = αxt−1 + θzt+1,

xt+1 = αxt + θzt+1,

xt−1 = x > 0.

The unconstrained optimal solution is where U is maximized by setting xt =
xt+1 = zt = zt+1 = 0. The initial condition prevents this from being realized.
The two first-order conditions (15.38) and (15.39) are

−γzt = 0,

−γzt+1 − (1+α)θxt+1 − θxt = 0.

It follows that the optimal solution at time t is

zt = 0,

zt+1 = −αφx,
xt = α(1− θφ)x,

xt+1 = α[α− (1+α)θφ]x,

φ = [1+α(1+α)]θ
γ + [1+ (1+α)2]θ2

.

At time t + 1, from (15.40) the optimal solution satisfies

−γz∗t+1 − θx∗t+1 = 0;

hence, given the constraint and the previous solutions for xt and zt , the new
optimal solution for period t + 1 is

z∗t+1 = −
α2θ(1− θφ)
γ + θ2

x,

x∗t+1 =
α2γ(1− θφ)
γ + θ2

x.

Thus, in general, z∗t+1 differs from zt+1 and policy is time inconsistent.
Consider a numerical example where α = γ = θ = 1

2 . It follows that φ = 2
3 .

Hence, zt = 0, zt+1 = −1
3x, z∗t+1 = − 1

18x, xt = 1
3x, xt+1 = 0, x∗t+1 = 1

18x, Ut =
− 1

18x
2, Ut+1 = − 1

36x
2, U∗t+1 = − 1

216x
2. We note that z∗t+1 > zt+1, hence policy is

time inconsistent. Since U∗t+1 > Ut+1, there has been an improvement in welfare
as a result of the reoptimization of policy. Had the initial condition been x = 0,
policy would not have been time inconsistent.

15.8 The Linear Rational-Expectations Models

For simplicity, we have more often than not suppressed the fact that our
intertemporal macroeconomic models are stochastic and the future is uncertain
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and instead treated them as though the future is known with certainty. How-
ever, in solving the dynamic equations that emerge, we should take account
of the fact that they are usually stochastic and, where there are future vari-
ables, we should treat them as rational expectations of the future that are
based on current information. We therefore consider the solutions to linear
rational-expectations models rather than nonstochastic difference equations.

15.8.1 Rational Expectations

The rational expectation of xt+1 conditional on information available at time t
may be written

Et(xt+1) = E(xt+1 | Φt),
where Φt is the set of information available at time t. It is therefore the mean
of the conditional distribution of xt+1 given Φt .

Two pieces of information are involved here: Φt and the conditional proba-
bility distribution of xt+1. In economics, under full rationality, we require com-
plete knowledge of the macroeconomic model, which must be a correct repre-
sentation of the economy, the variables that enter the model, and the underlying
stochastic structure. This is a very demanding interpretation of rationality and
is best treated as a limiting case. In practice, probably the most we should hope
for is that we do not repeat mistakes—in other words, the forecast error of xt+1

is uncorrelated with past forecast errors.
Formally, if expectations are rational with respect to Φt , then the forecast

error is
εt+1 = xt+1 − Et(xt+1)

and has the property
Et(εt+1) = 0.

In other words, the best forecast of εt+1 based on the information Φt is that
it will be zero. Since Φt contains current and past information, including
knowledge of past forecast errors {εt−s , s � 0},

Et(εt+1εt−s) = 0, s � 0.

Thus, future forecast errors are uncorrelated with past errors. For this reason
the forecast errors are sometimes called innovations, implying that they are
always new, and unanticipated, events. We note that if Φt consists solely of
current and past values of xt , i.e., {Φt : xt−s , s � 0}, then the expectation is
said to be weakly rational.

The solution method that we describe for rational-expectations models is
that of Whiteman (1983). This is an extension of Muth’s (1961) method of
undermined coefficients and Lucas’s (1972) variant on this. There are a num-
ber of other solution methods too. The advantage of Whiteman’s method is
that it helps clarify what is happening when the solution is not unique. The
disadvantage is that it is not a completely general solution.
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Using Whiteman’s extension of the method of undetermined coefficients, we
derive the solutions to the two rational-expectations models that appear most
often in dynamic general equilibrium macroeconomic models. We can then draw
on these solutions in the main text. We show that where there is a unique solu-
tion, there is a simpler, and more direct, way of deriving the solution. We com-
plete our discussion by considering the solution to systems of rational equa-
tions and how to determine whether or not they are unique. This is related to
the alternative solution method of Blanchard and Kahn (1980).

15.8.2 The First-Order Nonstochastic Equation

We begin by considering the solution to a simple, nonstochastic, first-order,
single, difference equation. Consider the model

xt = αxt−1 + zt. (15.41)

We introduce the lag operator L, which has the property of converting xt to
either a lag or a lead:

Lsxt = xt−s ,
L−sxt = xt+s .

The difference equation can therefore be rewritten as

(1−αL)xt = zt
or as

α(L)xt = zt.
We introduce the auxiliary polynomial equation

α(L) = 1−αL = 0.

This determines the dynamic behavior of xt . Solving this for L provides the
(single) root of the polynomial as

L = 1
α
.

If this root is greater than or equal to unity in absolute value, then the difference
equation is stable; if it is less than unity in absolute value, then it is unstable.

15.8.2.1 The Stable Case: |α| � 1

In this case the root |1/α| � 1 and it is said to lie outside the unit circle.
Equation (15.41) can then be solved for xt as follows:

xt = zt
1−αL

=
( ∞∑
s=0

αsLs
)
zt

=
∞∑
s=0

αszt−s .
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(Note that lims→∞αsLs = 0 if |α| < 1.) xt is therefore determined by current
and past values of zt . A change to zt would result in xt converging back to
equilibrium at the geometric rate α.

This solution can also be obtained without using the lag operator by
successive substitution of xt−1,xt−2, . . . in (15.41). Thus,

xt = α(αxt−2 + zt−1)+ zt
= α2xt−2 + zt +αzt−1

...

=
∞∑
s=0

αszt−s ,

provided lims→∞αsxt−s = 0.

15.8.2.2 The Unstable Case: |α| > 1

In this case lims→∞αsLs explodes and hence does not exist. It is therefore no
longer possible to solve the equation backwards (i.e., to solve xt as a function of
past zt). Consider instead, therefore, solving the difference equation forwards.
First, we rewrite the difference equation for period t + 1, and then pre-multiply
by −(1/α)L−1 to obtain (

1− 1
α
L−1

)
xt = − 1

α
L−1zt.

This may now be written

xt = −(1/α)L−1zt
1− (1/α)L−1

= −
( ∞∑
s=0

α−sL−s
)

1
α
L−1zt

=
∞∑
s=1

α−szt+s , (15.42)

where we have used lims→∞α−sL−s = 0. Thus, in this unstable case, xt can be
expressed as a function of future values of zt . Given knowledge of these future
values, by solving equation (15.42) we can arrive at the value xt . According
to this solution, changes in future values of zt (i.e., in zt+s ; s > 0) will cause
a change in xt even before they occur in zt . In a world of perfect knowledge
this implies that there is a unique value of zt+s (s > 0); it cannot therefore be
changed—by future policy for example. We also note that we need zt+s (s > 0)
not to increase faster than α−1 in order for the solution to equation (15.42) to
exist.

In effect, in obtaining equation (15.42) we have rewritten equation (15.41) as

xt = 1
α
xt+1 − 1

α
zt+1

and, noting that |1/α| < 1, we have solved this forwards.
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15.8.3 Whiteman’s Solution Method for Linear Rational Expectations
Models

Whiteman’s solution method can be used for a large number of different types
of rational expectations (RE) models. We derive the solutions for two models
that appear frequently in our macroeconomic analysis. These are

xt = αEtxt+1 + γzt + et, |α| < 1, (15.43)

xt = αEtxt+1 + βxt−1 + γzt + et, (15.44)

where zt satisfies

zt =
∞∑
s=0

φset−s +
∞∑
s=0

θsεt−s

= φ(L)et + θ(L)εt (15.45)

with φ0 = 1, θ0 = 1,
∑∞
s=0φ2

s < ∞,
∑∞
s=0 θ2

s < ∞, φ(L) = ∑∞
s=0φsLs and

θ(L) = ∑∞
s=0 θsLs are analytic functions (this roughly means that they exist

and have continuous derivatives when evaluated at their roots) where et and
εt are uncorrelated zero-mean i.i.d. processes, and L is the lag operator such
that Lsxt = xt−s and L−sxt = Etxt+s . This implies that xt and zt are stationary
zero-mean processes. If they contain a unit root, then we replace xt and zt by
∆xt and ∆zt . We can also add nonzero means. If θs = 0, then zt would be a
strongly exogenous process.

We also note that Whiteman’s solution method can be applied to models
where the rational expectation takes the form Et−pxt−q (p > q): for example,

xt = αEt−1xt + γzt + et.

It is assumed that the general solution has the form

xt =
∞∑
s=0

aset−s +
∞∑
s=0

bsεt−s

= A(L)et + B(L)εt, (15.46)

where A(L) =∑∞
s=0 asLs and B(L) =∑∞

s=0 bsLs contain no roots inside the unit
circle. The problem is how to determine the values of {as, bs ; s � 0}; hence the
notion of undetermined coefficients.

We will need to use the following Weiner–Kolmogorov prediction formula for
stationary processes that have the Wold (moving average) representation:

yt =
∞∑
s=0

cset−s

= C(L)et,
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where et is a zero-mean i.i.d. process. Thus

Etyt+n = Et(c0et+n + c1et+n−1 + · · · + cnet + cn+1et−1 + · · · )
= cnet + cn+1et−1 + · · ·

= L−n
[
C(L)−

n−1∑
s=0

csLs
]
et.

We also note that

1−αL−1C(α)C(L)−1

1−αL−1
yt =

∞∑
s=0

αsEtyt+s . (15.47)

We now consider the solutions to equations (15.43) and (15.44).

15.8.3.1 The Solution to Equation (15.43)

Using the Weiner–Kolmogorov formula and taking note of equations (15.46) and
(15.45), equation (15.43) can be written as

A(L)et + B(L)εt = αL−1{[A(L)− a0]et + [B(L)− b0]εt}
+ γ[φ(L)et + θ(L)εt]+ et.

Equating terms in et and εt gives

A(L) = L+ γLφ(L)−αa0

L−α , (15.48)

B(L) = γLθ(L)−αb0

L−α , (15.49)

where a0 and b0 are free coefficients.
Equations (15.48) and (15.49) are analytic for |L| < 1 if and only if the roots

of the auxiliary equation

L−α = 0

lie on or outside the unit circle (i.e., if |α| � 1). This is known as the stable case.
When |α| < 1 we have an unstable solution.

(i) The Stable Case. We obtain this by substituting equations (15.48) and (15.49)
into (15.46), which gives

xt = L+ γLφ(L)−αa0

L−α et + γLθ(L)−αb0

L−α εt.

Hence

−α
(

1− 1
α
L
)
xt = γL[φ(L)et + θ(L)εt]+ (L−αa0)et −αb0εt

or

xt = 1
α
xt−1 − γαzt−1 − 1

α
et−1 + a0et + b0εt. (15.50)
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As the coefficients a0 and b0 are undetermined, this solution is not unique. We
note from equation (15.46) that the last two terms comprise the innovation in
xt based on information available at time t − 1, i.e.,

xt − Et−1xt = a0et + b0εt.

Suppose instead that we simply invert equation (15.43) as

xt+1 = 1
α
xt − γαzt +

1
α
et + (xt+1 − Etxt+1), (15.51)

where, from (15.46), the innovation in xt+1 is

xt+1 − Etxt+1 = a0et+1 + b0εt+1.

This is exactly the same as equation (15.50). We conclude, at least in this stable
case, that we can obtain the solution just by inverting equation (15.43). We note,
however, that because the innovation in time t + 1 is unknown at time t, this
is not a unique solution; any innovation in t + 1 would give a valid solution.
It is of course tempting to obtain a unique solution by setting this innovation
equal to zero on the grounds that this would be the best estimate of it given
the information available at time t even though it is not likely to be zero when
it is realized at time t + 1.

The difference between the solution of the rational-expectations model and
that of the nonstochastic first-order difference equation is the presence of the
innovation in the RE solution, which makes the RE solution nonunique.

(ii) The Unstable Case. We now consider the case where |α| < 1. This is in
fact what we assumed in specifying equation (15.43). The solution procedure is
now more complicated. In this case a singularity occurs in the A(L) and B(L)
functions at L = α. In order to remove this singularity we require that the
residues of these functions at L = α be zero. Thus we require that

lim
L→α
(L−α)A(L) = α+ γαφ(α)−αa0 = 0.

This determines the free coefficient a0 as

a0 = 1+ γφ(α).
Thus

A(L) = 1+ γLφ(L)−αγφ(α)
L−α

= 1+ γφ(L)1−αL
−1φ(α)φ(L)−1

1−αL−1
.

By a similar argument, b0 = γθ(α) and

B(L) = γLθ(L)−αγθ(α)
L−α

= γθ(L)1−αL
−1θ(α)θ(L)−1

1−αL−1
.
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From (15.47) we may write the solution for xt as

xt = γ
{ ∞∑
s=0

αsEt[φ(L)et+s + θ(L)εt+s]
}
+ et

= γ
∞∑
s=0

αsEtzt+s + et. (15.52)

Thus, in this unstable case, xt is determined uniquely by the expected dis-
counted value of current and future values of zt .

Suppose now that we derive a solution directly from equation (15.43) by
solving it forwards. Thus we rewrite (15.43) as

xt = αL−1xt + γzt + et
= γzt + et

1−αL−1

=
∞∑
s=0

αsL−s(γzt + et)

=
∞∑
s=0

αsEt(γzt+s + et+s)

= γ
∞∑
s=0

αsEtzt+s + et.

This is identical to the full solution using the extended method of undetermined
coefficients, equation (15.52).

Finally, this solution may be compared with the nonstochastic case, equa-
tion (15.42). The key difference between equations (15.52) and (15.42) is that
in the nonstochastic case expectations of zt+s replace actual values; whereas
the value of z in future periods cannot change, its expectation based on
contemporaneous information can.

15.8.3.2 The Solution to Equation (15.44)

Using the Weiner–Kolmogorov formula enables us to write equation (15.44) as

A(L)et + B(L)εt = αL−1{[A(L)− a0]et + [B(L)− b0]εt}
+ βL[A(L)et + B(L)εt]+ γ[φ(L)et + θ(L)εt]+ et.

Equating terms in et and εt gives

A(L) = −L+ γLφ(L)−αa0

βL2 − L+α , (15.53)

B(L) = −γLθ(L)−αb0

βL2 − L+α , (15.54)

where a0 and b0 are free coefficients. Denoting the roots of the auxiliary
equation

βL2 − L+α = 0



�

�

“wickens” — 2007/10/15 — 13:08 — page 453 — #471
�

�

�

�

�

�

15.8. The Linear Rational-Expectations Models 453

by λ1 and λ2 (and for convenience assuming that they are real), we obtain

(L− λ1)(L− λ2) = 0, (15.55)

L2 − (λ1 + λ2)L+ λ1λ2 = 0. (15.56)

Hence λ1 + λ2 = 1/β and λ1λ2 = α/β.
There are three cases to consider:

(i) |λ1|, |λ2| � 1, when the model is said to be stable;

(ii) |λ1|, |λ2| < 1, when the model is said to be unstable;

(iii) |λ1| � 1, |λ2| < 1, when the model is said to have a saddlepath solution.

If both roots are either stable or unstable, then the evaluation of the
polynomial at L = 1 is

(L− λ1)(L− λ2)|L=1 = (1− λ1)(1− λ2) � 0,

i.e., α+ β � 1. But if the solution is a saddlepath, then

(L− λ1)(L− λ2)|L=1 � 0,

i.e., α + β � 1. Equality occurs when there is a unit root. These inequalities
provide a quick way of checking the type of solution. We now consider the
solution of xt .

(i) The Stable Case: |λ1|, |λ2| � 1. The solution for xt is

xt = −L+ γLφ(L)−αa0

βL2 − L+α et − γLθ(L)−αb0

βL2 − L+α εt,

which may be written as

(βL2 − L+α)xt = −γL[φ(L)et + θ(L)εt]− (L−αa0)et +αb0εt (15.57)

or as

xt = 1
β
xt−1 − αβxt−2 − γβzt−1 − 1

β
et−1 + αβ(a0et + b0εt)

= 1
β
xt−1 − αβxt−2 − γβzt−1 − 1

β
et−1 + αβ(xt+1 − Etxt+1),

which is nonunique as a0 and b0 are undetermined.
The corresponding solution obtained simply by inverting equation (15.44) is

xt+1 = 1
β
xt − αβxt−1 − γβzt −

1
β
et + αβ(xt+1 − Etxt+1).
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(ii) The Unstable Case: |λ1|, |λ2| < 1. As both roots are unstable, a singularity
occurs in the A(L) and B(L) functions at L = λ1 and L = λ2. In order to remove
these singularities we require that

lim
L→λi

(L− λi)A(L) = λi + γλiφ(λi)−αa0 = 0, i = 1,2.

This gives

a0 = λi + γλiφ(λi)α
for both λ1 and λ2. Hence the solution is over-determined; we do not know
which value of a0 to choose. A similar result is obtained for b0, namely

b0 = γλiφ(λi)α
.

Proceeding despite this we can show that the solution for xt is again equa-
tion (15.57). Noting that

βL2 − L+α = β(L− λ1)(L− λ2)
= αL2(1− λ1L−1)(1− λ2L−1)

and that

1
(1− λ1L−1)(1− λ2L−1)

= 1
λ1 − λ2

(
λ1

1− λ1L−1
− λ2

1− λ2L−1

)

= 1
λ1 − λ2

∞∑
s=0

(λs+1
1 − λs+1

2 )L−s ,

the solution may be written as

xt = − L−2

α(λ1 − λ2)

∞∑
s=0

(λs+1
1 − λs+1

2 )L−s{γL[φ(L)et + θ(L)εt]
+ (L−αa0)et −αb0εt}

= − γ
α(λ1 − λ2)

∞∑
s=1

(λs1 − λs2)Etzt+s +
1

λ1 − λ2
(a0et + b0εt), (15.58)

where there are two choices for each of a0 and b0. This is a purely forward-
looking solution.

Had we adopted the more direct approach, we would have written equa-
tion (15.44) as

(βL2 − L+α)xt+1 = αL2(1− λ1L−1)(1− λ2L−1)xt+1

= −γzt − et,
where we have used Etxt+1 = L−1xt instead of Etxt+1 = xt+1− (xt+1−Etxt+1).
This gives the solution

xt+1 = − γ
α(λ1 − λ2)

∞∑
s=1

(λs1 − λs2)Etzt+s+1,

which omits the innovation term in equation (15.58) and is therefore an incom-
plete solution.
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(iii) The Saddlepath Case: |λ1| � 1, |λ2| < 1. This type of solution is very
common in DGE macroeconomic models and is therefore of most interest to
us. We now have one stable root λ1 and one unstable root λ2. Here there is one
singularity in the A(L) and B(L) functions. This occurs at L = λ2. In order to
remove this singularity we require that

lim
L→λ2

(L− λ2)A(L) = λ2 + γλ2φ(λ2)−αa0 = 0.

This gives

a0 = λ2 + γλ2φ(λ2)
α

.

Similarly, for b0 we obtain

b0 = γλ2φ(λ2)
α

.

The solution for xt is therefore

(βL2−L+α)xt = −[L+γLφ(L)−λ2−γλ2φ(λ2)]et − [γLθ(L)−γλ2φ(λ2)]εt.

Noting that

βL2 − L+α = −αλ1L
(

1− 1
λ1
L
)
(1− λ2L−1)

we have

αλ1

(
1− 1

λ1
L
)
xt

= γ
[
φ(L)

1− λ2L−1φ(λ2)φ(L)−1

1− λ2L−1
et + θ(L)1− λ2L−1θ(λ2)θ(L)−1

1− λ2L−1
εt
]
+ et

or

xt = 1
λ1
xt−1 + γ

αλ1

∞∑
s=0

λs2Etzt+s +
1
αλ1

et, (15.59)

which is a unique solution involving both forward- and backward-looking terms.
Suppose that we now apply the more direct method to equation (15.44). Thus

first we rewrite it as
(βL2 − L+α)xt = −γzt − et.

Hence

αλ1L
(

1− 1
λ1
L
)
(1− λ2L−1)xt = γzt + et

or

xt = 1
λ1
xt−1 + 1

αλ1

γzt + et
1− λ2L−1

= 1
λ1
xt−1 + γ

αλ1

∞∑
s=0

λs2Etzt+s +
1
αλ1

et, (15.60)

which is the same solution as (15.59). Thus, once more, when the solution is
unique, we have an alternative and simpler way of deriving the solution.
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Equation (15.59) may also be written as

∆xt =
(

1− 1
λ1

)
(x∗t − xt−1) (15.61)

x∗t =
γ

α(λ1 − 1)

∞∑
s=0

λs2Etzt+s +
1

α(λ1 − 1)
et. (15.62)

This is a partial adjustment model in which the dynamic adjustment of xt fol-
lowing a change in the long-run equilibrium value x∗t (which is brought about
by changes in current or expected future zt) may be considered in two parts.
At time t, xt adjusts by a proportion 1 − (1/λ1) of the gap between x∗t and
xt−1; in subsequent periods it adjusts by a proportion 1/λ1 of the change in
the previous period until the new equilibrium is reached. The former is often
referred to as xt jumping onto the saddlepath; the latter as xt moving along
the saddlepath to equilibrium.

The saddlepath is sometimes portrayed as a knife-edge solution in which a
failure of xt to jump onto the saddlepath may cause it to diverge for ever,
possibly exploding. This is misleading. This interpretation derives from the
associated phase diagram of the solution in which points off the saddlepath
are depicted as leading to increased divergence from both the saddlepath and
the new equilibrium. In fact, xt must always lie on the saddlepath and cannot
deviate from it. This is because xt must satisfy both the original model and the
saddlepath. Equation (15.61) is just another representation of equation (15.59);
and the precise characteristics of the saddlepath depend on the parameters of
equation (15.59).

15.8.3.3 Summary of Results

We have demonstrated how to obtain the solutions of rational-expectations
models like equations (15.43) and (15.44). Some of the solutions are not
unique—typically where the solution is stable—some are over-determined—in
equation (15.44), where there is more than one unstable root—and some are
unique. We have shown how to determine which of these types of solutions
occurs. A unique solution occurs for an equation with a single forward expec-
tation without a lag, like (15.43), when the single root is unstable, and for an
equation with a lag in addition, like (15.44), which has two roots, one stable
and one unstable, giving a saddlepath. We have also shown that where the solu-
tion is unique there is a simpler and more direct way of obtaining the solution.
We now extend this discussion to systems of rational-expectations equations
with a view to determining what type of solution occurs and how to derive the
solution when it is unique.

15.8.4 Systems of Rational-Expectations Equations

We consider the system[
xt+1

Etyt+1

]
=
[
Axx Axy
Ayx Ayy

][
xt
yt

]
+
[
Cx
Cy

]
zt, (15.63)
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where xt+1 is a vector of n variables that are predetermined at time t, yt+1 is
a vector of m variables that are not predetermined at t, and zt are exogenous
variables. We wish to find the solution for yt . We gives examples of how to
represent models in this form below.

We denote the size n+m matrix A by

A =
[
Axx Axy
Ayx Ayy

]
.

Its Jordan canonical form is
A = QΓQ−1,

where Γ is a diagonal matrix of eigenvalues ordered by size:

Γ =
[
Γxx 0

0 Γyy

]
.

Proposition. There is a unique solution to this system if Γxx has n eigenvalues
all either on or inside the unit circle and Γyy hasm eigenvalues all outside the
unit circle.

The solution may be obtained by first taking expectations of the system
(15.63) to give [

Etxt+1

Etyt+1

]
=
[
Axx Axy
Ayx Ayy

][
xt
yt

]
+
[
Cx
Cy

]
zt, (15.64)

and then defining

Zt =
[
Xt
Yt

]
= Q−1

[
xt
yt

]

so that the system can be written as

EtZt+1 = Q−1AQZt +Q−1Czt
= Γ Zt +Q−1Czt, (15.65)

where

C =
[
Cx
Cy

]
.

Thus (15.65) consists of n+m equations of the form

EtZi,t+1 = γiZit + Pizt, i = 1, . . . , n+m,
where γi are the individual eigenvalues of Λ and Pi is the ith row of Q−1C .

We can now apply the results derived above to each of these equations, noting
that γi is an inversion of the earlier eigenvalues so that γi ≡ λ−1

i . We have
previously argued that a unique solution occurs if λi lies inside the unit circle,
which implies that γi must lie outside, as noted in the proposition. This implies
that there is a unique solution for Zit (i = n+ 1, . . . ,m) and it is given by

Zit = −
∞∑
s=0

γ−si PiEtzt+s ,
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and hence

Yt = −
∞∑
s=0

Γ −syyPiEtzt+s .

We are interested in the solution for yt . This is obtained from[
xt
yt

]
= Q

[
Xt
Yt

]
;

hence, as Xt = xt ,

yt = Qyxxt −
∞∑
s=0

Γ −syyQyyPiEtzt+s . (15.66)

We now give some examples of how to write a rational-expectations model in
the form of equation (15.63).

Example 15.9. Consider the solution to the model

Et∆yt+1 = yt − xt + et, (15.67)

xt = 0.25xt−1 + εt, (15.68)

where et and εt are zero-mean innovation processes.
The model can be written in the form of (15.63) as[

xt+1

Etyt+1

]
=
[

0.25 0

−1 2

][
xt
yt

]
+
[
εt+1

et

]
. (15.69)

Using the lag operator, the system (15.69) can be rewritten using the notation
of (15.65) as

B(L)Zt+1 = zt, (15.70)

where B(L) = I −AL. The eigenvalues can be obtained from

detB(L) = 0.

We note that

det(I −AL) = (1− λ1L)(1− λ2L)

= 1− (λ1 + λ2)L+ λ1λ2L2

= 1− (trA)L+ (detA)L2,

where the roots are γi = 1/λi and are obtained from

{λ1, λ2} = 1
2 trA± 1

2[(trA)
2 − 4(detA)]1/2.

Hence the roots satisfy

{λ1, λ2} = 1
2 trA± 1

2[(trA)
2 − 4(detA)]1/2.
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Using a first-order Taylor series approximation to the term in the square root
gives a result that is sometimes useful, especially for local approximations to
nonlinear systems, namely

{λ1, λ2} �
{

detA
trA

, trA− detA
trA

}
.

Hence ∣∣∣∣∣I −
[

0.25 0

−1 2

]
L

∣∣∣∣∣ = (1− 2L)(1− 0.25L) = 0,

and the roots are 1/λ1 = 4 and 1/λ2 = 0.5, implying a saddlepath solution.
The inverse of B(L) is the adjoint matrix of B(L) divided by the determinant

of B(L):

B(L)−1 = adjB(L)
detB(L)

,

where
detB(L) = (1− 2L)(1− 0.25L).

Hence
[detB(L)]Zt = [adjB(L)]Lzt

or

(1− 2L)(1− 0.25L)Zt = −2(1− 0.5L−1)(1− 0.25L)LZt

=
[

1− 2L 0

L 1− 0.25L

]
Lzt.

The solution for yt is therefore

(1− 0.25L)yt = − 1
2(1− 0.5L−1)

[εt + (1− 0.25L)et]

or

yt = 0.25yt−1 −
∞∑
s=0

0.5s+1Et[εt+s + (1− 0.25L)et+s]

= 0.25yt−1 − 0.5εt − 0.375et + 0.25et−1.

Example 15.10. Consider the single equation

yt = αEtyt+1 + βyt−1 + γzt + et.
We can rewrite this as the two-equation system[

1 0

0 α

][
yt

Etyt+1

]
=
[

0 1

−β 1

][
yt−1

yt

]
+
[

0

−1

]
(γzt + et),

or, in the form of (15.63), as[
yt

Etyt+1

]
=
[

0 1

−β/α 1/α

][
yt−1

yt

]
+
[

0

−1/α

]
(γzt + et).
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The roots of this system are obtained from

det(I −AL) = 1− 1
α
L+ β

α
L2

= (1− λ1L)(1− λ2L) = 0,

where the roots are 1/λ1 and 1/λ2. Assuming that we have a unique saddlepath
solution with |λ1| � 1 and |λ2| > 1,

det(I −AL) = −λ2L(1− λ1L)(1− λ−1
2 L

−1).

Writing the solution in the form

[detB(L)]Zt = [adjB(L)]L
[

0

−1/α

]
(γzt + et),

−λ2L(1− λ1L)(1− λ−1
2 L

−1)Zt =
[

1− (1/α)L −(β/α)L
L 1

][
0

−1/α

]
(γzt + et),

we obtain

(1− λ1L)Zt = − 1

λ2(1− λ−1
2 L−1)

[
1− (1/α)L −(β/α)L

L 1

][
0

−1/α

]
(γzt + et).

Hence

yt = λ1yt−1 + γ
αλ2

∞∑
s=0

λ−s2 Etzt+s +
1
αλ2

et,

which is the same as the previous solution, equation (15.60), apart from the
inversion of the names of the roots.

Finally, we note that we have focused on unique solutions in our discussion
of systems in which there are as many unstable roots as there are nonpredeter-
mined variables. If there are less unstable roots (more stable roots) than there
are nonpredetermined variables, then we have an infinity of solutions, and if
there are more unstable roots than nonpredetermined variables, then there is
no solution. The former is the case of a stable model.
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